3ª Prova - Analise Funcional

11 de julho de 2024 Universidade Federal do Rio de Janeiro

Questão 1. (**2p**) Seha X um espaço de Banach reflexivo. Mostre que, para qualquer $\varphi \in X^* \setminus \{0\}$, existe $x_{\max} \in X$ com $\|x_{\max}\| = 1$ tal que

$$\varphi(x_{\text{max}}) = \sup \{ |\varphi(x)| : x \in X, ||x|| \le 1 \}.$$

Solução 1. Como X é reflexivo, a bola unitário $B:=\{x\in X:\|x\|\leq 1\}$ é fracamente compacto. Além disso, por definição, qualquer $\varphi\in X^*$ é contínua na topologia fraca: Para qualquer $\varphi\neq 0$ e $z\in\mathbb{C}$, existe $x:\varphi(x)=z$. Então

$$\varphi^{-1}(B_{\epsilon}(z)) = \{ y \in X : |\varphi(y) - z| < \epsilon \}$$

é aberto na topologia fraca por definição. Por compacidade, existe $x_1 \in B$ tal que $|\varphi(x_1)| = \sup\{|\varphi(x)| : x \in X, ||x|| \le 1\}$. Para $\lambda := \overline{\varphi(x_1)}/|\varphi(x_1)|$ e $x_{\max} := \lambda x_1$,

$$\varphi(x_{\text{max}}) = \lambda \varphi(x_1) = |\varphi(x_1)| = \sup \{ |\varphi(x)| : x \in X, ||x|| \le 1 \}.$$

Basta mostrar que $||x_{max}|| = 1$. Mas se $||x_{max}|| < 1$, então

$$|\varphi(x_{\max})| = ||x_{\max}||^{-1} \sup \{|\varphi(x)| : x \in X, ||x|| \le 1\} > \sup \{|\varphi(x)| : x \in X, ||x|| \le 1\},$$

que é absurdo.

Questão 2. (1.5p + 0.5p + 2p) Seja $X = \ell^p(\mathbb{N})$ para $1 \le p < \infty$, $Y = \ell^1(\mathbb{N})$ e $T: X \to Y$ um operador limitado.

a) Mostre que, para $x,y_1,y_2,\ldots\in X$, tal que $y_n\rightharpoonup 0$ (i.e. (y_n) converge para 0 fracamente), que

$$\limsup_{n \to \infty} \|x + y_n\|_p^p = \|x\|_p^p + \limsup_{n \to \infty} \|y_n\|_p^p.$$

b) Mostre que, para $x \in X$, $y_n \rightarrow 0$ e qualquer t > 0 que

$$||T(x)||_1 + t \limsup_{n \to \infty} ||Ty_n||_1 \le ||T|| \left(||x||_p^p + t^p \limsup_{n \to \infty} ||y_n||_p^p \right)^{1/p}.$$

c) Suponha que p>1. Mostre que T é compacto. $\emph{Dica.}$ Mostre que a imagem sob T de uma sequência fracamente convergente em X é fortemente convergente em Y.

Comentário. Pode-se aplicar o resultado de (a) para provar (b) e o resultado de (b) para provar (c), sem ter provado estes previamente.

Solução 2. a) Suponha que $x = (x_1, \dots x_k, 0, 0, \dots)$ e $y_n = (y_1^{(n)}, y_2^{(n)}, \dots)$. Como $y_n \to 0$, obtemse que $\lim_n y_i^{(n)} = 0$ para qualquer i. Então,

$$\limsup_{n} \sum_{i=1}^{k} |x_i + y_i^{(n)}|^p + \sum_{i=k+1}^{\infty} |y_i^{(n)}|^p = \sum_{i=1}^{k} |x_i|^p + \limsup_{n} \sum_{i=k+1}^{\infty} |y_i^{(n)}|^p$$
$$= ||x||^p + \limsup_{n} ||y_n||^p$$

O caso geral é uma consequência do fato que o subespaço dos elementos com um número finito de entradas não nulos é denso.

b) Pela definição da norma de T, $\|T(x+ty_n)\|_1 \le \|T\| \|x+ty_n\|_p$. Daí, por (a),

$$||T(x)||_1 + t \limsup_n ||Ty_n||_1 \le ||T|| \left(||x||_p^p + t^p \limsup_n ||y_n||_p^p \right)^{\frac{1}{p}}.$$

c) Pela definição de $\|T\|$, existe (x_m) com $\|x_m\|=1$ para qualquer m e $\|Tx_m\|\to \|T\|$. Se $y_n\to 0$, mas $y_n\not\to 0$, então $\gamma:=\limsup_n\|y_n\|_p^p>0$. Daí, por (b),

$$\limsup_{n} \|Ty_n\|_1 \leq \frac{1}{t} \left(\|T\| \left(1 + \gamma t^p\right)^{\frac{1}{p}} - \|T\| \right).$$

Daí, a derivada de $\|T\| \left(1+\gamma t^p\right)^{1/p}$ em 0 é uma limitação superior para $\limsup_n \|Ty_n\|_1$. Como $\partial_t \left(1+\gamma t^p\right)^{1/p}=\gamma \left(1+\gamma t^p\right)^{1/p-1}t^{p-1}$ para p>1, seque que $\limsup_n \|Ty_n\|_1=0$. Ou seja, $\|Ty_n-0\|_1\to 0$.

Note que, como X é reflexivo, a bola unitária é sequencialmente fracamente compacto. Então, qualquer sequência limitada (x_n) em X contem uma subsequência (x_{n_k}) fracamente convergente. Pelo anterior, (x_{n_k}) converge na norma. Ou seja, T é compacto.

Questão 3. (**3p+1.5p**) Seja $K \subset \mathbb{C}$ compacto e $X = C(K, \mathbb{C})$, o espaço das funções contínuas munido com $\|f\| := \sup_{z \in K} |f(z)|$. Para $\varphi \in X$, define $T_{\varphi} : X \to X$ por $T_{\varphi}(f)(z) = \varphi(z)f(z)$.

- a) Determine o espectro de T_{φ} .
- b) Determine o espectro pontual e o espectro contínuo de T_{φ} .

Dica. $T_{\varphi} - \lambda \operatorname{id} = T_{\varphi - \lambda}$

Solução 3. a) Ao primeiro, discutiremos quando T_{φ} é bijetor.

Ao primeiro, note que $T_{\varphi}(f)(z) = T_{\varphi}(g)(z)$ se e somente se $\varphi(z)(f(z) - g(z))$. Daí, a ação de T_{φ} é injetor em $C(\{z: \varphi(z) \neq 0\}, \mathbb{C})$. Em particular, se $\{z: \varphi(z) \neq 0\}$ é denso em K, T_{φ} é injetor.

Porém, se $\{z: \varphi(z) \neq 0\}$ contém um aberto U, então para qualquer função f com $\mathrm{supp}(f) \subset U$, tem-se que $T_{\varphi}(f) = 0$. Como tais funções sempre existem, T_{φ} não é injetor neste caso.

Daí, para ver se T_{φ} é bijetor, basta analisar o caso $\{z: \varphi(z) \neq 0\}$ denso em K. Se $\{z: \varphi(z) = 0\} = \emptyset$, então $\inf_{z \in K} |\varphi(z)| > 0$ implica que $1/\varphi \in X$ e, em particular, $T_{\varphi}^{-1} = T_{1/\varphi}$ é um operador bem-definido em X.

Do outro lado, se $N:=\{z: \varphi(z)=0\} \neq \emptyset$, então $T_{\varphi}(X) \subset \{f \in X: f|_{N}=0\} \neq X$. Ou seja, T_{φ} não é inversível.

Daí, pelo anterior e o fato que $T_{\varphi} - \lambda \operatorname{id} = T_{\varphi - \lambda}$,

$$\begin{split} \sigma(T_\varphi) = & \{\lambda \in \mathbb{C} : T_\varphi - \lambda \, \mathrm{id} \, \text{ não \'e inversível} \} \\ = & \{\lambda \in \mathbb{C} : T_{\varphi - \lambda} \, \text{ não \'e inversível} \} = \varphi(K). \end{split}$$

b) Pelo anterior, $T_{\varphi} - \lambda$ id não é injetor se $\{z: \varphi(z) = \lambda\}$ contém um aberto. Ou seja,

$$\sigma_p(T_\varphi) = \{\lambda: \exists U \text{ aberto com } \varphi(U) = \{\lambda\}\}.$$

Basta analisar o caso $N:=\{z: \varphi(z) \neq \lambda\} \neq \emptyset$ e denso. Neste caso, como $T_{\varphi-\lambda}(X) \subset \{f \in X: f|_N=\lambda\}$, segue que para qualquer $c \neq \lambda$, existe um $\epsilon > 0$ tal que

$$\{f \in X : ||f - c|| < \epsilon\} \cap T_{\omega - \lambda}(X) = \emptyset.$$

Ou seja, $\sigma_c(T_{\varphi}) = \emptyset$.