1ª Prova - Analise Funcional

7 de maio de 2024 Universidade Federal do Rio de Janeiro

Questão 1. (0.5p + 1p + 1.5p) Seja $X = \ell^p(\mathbb{N})$, para $1 \le p \le \infty$. Além disso, seja T definido por $T((x_1, x_2, \ldots)) := (x_2 - x_1, x_3 - x_2, \ldots)$.

- a) Mostre que T é um operador limitado.
- b) Decide se T é injetor.
- c) Decide se T tem inversa limitada.

Solução 1. a) Obviamente, T é linear. Além disso, para $x \in \ell^p$, $||T(x)|| = ||(x_k - x_{k-1})_{k>1}|| \le 2||x||$.

b) Note que

$$\ker(T) = \{x : Tx = 0\} = \{x : x_k - x_{k-1} = 0 \forall k > 1\} = \{(t, t, t, \dots) \in \ell^p : t \in \mathbb{K}\}.$$

Se $p < \infty$ e $t \neq 0$, então $(t, ...) \notin \ell^p$. Daí, neste caso, $\ker(T) = \{0\}$ e T é injetor. Porém, se $p = \infty$ e $t \neq 0$, então $(t, ...) \in \ell^{\infty}$, $\ker(T) = \{(t, t, ...) : t \in \mathbb{R}\}$. Daí, neste caso, T é não injetor.

c) Pela 2a parte, T não tem uma inversa para $p = \infty$. No caso $p < \infty$, considere $t = y_1 = y_2 \cdots = y_n \neq 0$ e $y_k = 0$ para qualquer k > n. Em particular, $(x_n) \in \ell^p$. Além disso, $T((x_k)) = (y_k)$ se e somente se

$$x_2 - x_1 = t$$
, $x_3 - x_2 = t$, ..., $x_{n+1} - x_n = t$, ..., $x_{n+2} - x_{n+1} = 0$, ...

Ou seja, $(x_n) \in \ell^p$ se e somente se $x_k = 0$ para k > n. Além disso, por indução, obtém-se que $x_n = -t, x_{n-1} = -2t, \dots$ Daí,

$$\frac{\|T^{-1}(y)\|^p}{\|y\|^p} = \frac{\|x\|^p}{\|y\|^p} = \frac{|t|^p \sum_{k=1}^n k^p}{|t|^p n} \ge \frac{1}{n} \int_1^n x^p dx = \frac{n^p - 1}{n(p+1)} \xrightarrow{n \to \infty} \infty.$$

Questão 2. (2p) Sejam X,Y espaços de Banach e $T:X\to Y,S:Y^*\to X^*$ operadores lineares tal que $f\circ T=S(f)$ para qualquer $f\in Y^*$. Mostre que T é limitado.

Solução 2. Pelo teorema do gráfico fechado, basta mostrar que $\{(x, Tx) : x \in X\}$ é fechado. Ou seja, basta mostrar que $(x_n, Tx_n) \to (x, y)$ implica que Tx = y: Suponha que $f \in Y^*$. Então,

$$(f(x_n), f \circ T(x_n)) = (f(x_n), S(f)(x_n)) \xrightarrow{n \to \infty} (f(x), S(f)(x))$$

como $S(f) \in X^*$ é contínu
a. Pela continuidade de f, $f(y) = S(f)(x) = f \circ T(x_n)$. Ou seja, por Hahn-Banach, y = Tx. Daí, $\{(x, Tx) : x \in X\}$ é fechado.

Questão 3. (**2p**) Uma base de Hamel¹ de um espaço de Banach X é um subconjunto $\{e_i : i \in J\}$ tal que para todo $x \in X$ existe um único subconjunto finito $J_x \subset J$ e únicas $a_i \in \mathbb{K}$ $(i \in J_x)$ tal que $x = \sum_{i \in J_x} a_i e_i$.

Mostre que $\dim(X) = \infty$ implica que J não é enumerável.

Solução 3. Suponha que $J=\mathbb{N}$. Seja $V_n:=\operatorname{span}\{e_0,e_1,\ldots e_n\}$. Como $\dim(V_n)<\infty$, V_n é fechado. Além disso, $\bigcup V_n=X$ e, em particular, contém um aberto. Pelo teorema de Baire, existe um $n\in\mathbb{N}$ tal que $\operatorname{int}(A_n)\neq\emptyset$. Como o translação é um homeomorfismo, obtém-se que existe r>0 tal que $B_r(0)\subset A_n$. Daí, $A_n=X$ e $\dim(X)\leq n$.

Questão 4. (3p) Suponha que X é um espaço normado e que $D \subset X$ um subespaço, $D \neq \{0\}$. Mostre que as afirmações seguintes são equivalentes.

- a) Para cada $\varphi \in X^*$, $\varphi(D) = \{0\}$ implica que $\varphi = 0$.
- b) D é denso.

Solução 4. Suponha que D é denso. Então, para qualquer $x \in X$ e qualquer vizinhança U de x, $U \cap D \neq \emptyset$. Daí, para qualquer φ e $\epsilon > 0$, $\varphi^{-1}((\varphi(x) - \epsilon, \varphi(x) + \epsilon))$ contém um elemento de D. Daí, $0 \in (\varphi(x) - \epsilon, \varphi(x) + \epsilon)$. Ou seja, $\varphi(x) = 0$.

Suponha que D não é denso e $D \neq \{0\}$. Então, existe um aberto U tal que $U \cap D = \emptyset$. Escolhe $x \in U \setminus \{0\}$ e note que $\mathbb{K} x \cap D = \{0\}$ pois D é um espaço vetorial. Daí, para qualquer $z \in \operatorname{span}\{D,x\}$, existe uma única decomposição $z = \lambda x + v$, para $\lambda \in \mathbb{K}$ e $v \in D$. Em particular,

$$\varphi(z) := \lambda \|x\|$$

é um funcional linear definido em span $\{D,x\}$. Além disso, para $\lambda \neq 0$,

$$\frac{|\varphi(\lambda x)|}{\|\lambda x\|} = \frac{|\lambda|\|x\|}{\|\lambda x\|} = 1, \quad \frac{|\varphi(\lambda x + v)|}{\|\lambda x + v\|} \geq \frac{|\varphi(\lambda x + v)|}{\|\lambda x\| + \|v\|} \geq \frac{|\lambda|\|x\|}{\|\lambda x\|} = 1.$$

Daí, $\|\varphi\| = 1$ e, pelo Hahn-Banach, existe uma extensão $\overline{\varphi} \in X^*$ com $\overline{\varphi}(x) = \|x\| \neq 0$.

¹Pelo Lema de Zorn, uma base de Hamel sempre existe.