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Abstract
We show that in a rapidly mixing flow with an invariant measure, the time which
is needed to hit a given section is related to a sort of conditional dimension of
the measure at the section. The result is applied to the geodesic flow of compact
manifolds with variable negative sectional curvature, establishing a logarithm
law for such kind of flow.

Mathematics Subject Classification: 37D40, 37A25, 37A10, 37J55

1. Introduction

Let M be a differentiable manifold and let �t be a C1 flow in M . Let A ⊂ M be a set. Let us
consider the hitting time of the orbit of x ∈ M to the set A

τ(x, A) = inf{t ∈ R
+ : �t(x) ∈ A}. (1.1)

If we consider a decreasing sequence of shrinking target sets An, sometimes it is worth
having an estimation of the time needed for typical orbits to enter in An. If we suppose that
the flow preserves a measure µ, in a large class of situations sharing fast mixing or generic
arithmetic behaviour, a result of the following type holds

τ(x, An) ∼ 1

µ(An)
(1.2)

(where ∼ stand for some kind of more or less strict equivalence in the asymptotic behaviour,
when n → ∞). In discrete time systems earlier results of this kind were given in [4, 14].
Results of this kind are often called logarithm laws. As far as we know, the first place where
this name was used for such a result was in [17]. Since it is quite strictly related to the main
application we present here, let us describe this classical result and relate it with the above
formula.
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Let Hk+1 stand for the k + 1-dimensional real hyperbolic space (with curvature −1 ). Let
us consider a discrete group G of hyperbolic isometries of Hk+1 such that Y = Hk+1/G is not
compact and has finite volume. Let T 1Y be its unitary tangent bundle. Let π1 : T 1Y → Y the
canonical projection, �t the geodesic flow on T 1Y , µ the Liouville measure on T 1Y and d the
distance on Y . In [17] Sullivan proved a law for the speed of approach of typical geodesics to
the point at infinity.

Theorem 1.1 (Sullivan). For all p ∈ Y and µ almost each v ∈ T 1Y

lim sup
t→∞

d(p, π1(�
tv))

log t
= 1

k
. (1.3)

It is interesting to remark that the above result implies that there are infinitely many
times t1, t2, . . . where the geodesic reaches a ‘locally maximal’ distance from p, and ti ∼
ekd(p,π(�ti v)). We remark that in the above example, setting the target set YL = {v ∈
T 1Y, d(p, π(v)) � L} then µ(YL) ∼ e−kL (see proof of theorem 6 in [17]) thus it follows
that in this example, to enter in the set YL you need a time of the order of 1/µ(YL) (to be more
precise, this holds for a sequence of values of L). This shows a connection with formula (1.2)
and gives, as an example, the following consequence

lim inf
L→∞

log τ(v, YL)

− log µ(YL)
= 1. (1.4)

The Sullivan result on the geodesic flow was generalized to many other contexts. For
example, Kleinbock and Margulis [12] generalized it to homogeneous spaces. Another
generalization near to the context of this paper was given in [16] (see theorem 4.1) where this
kind of result is extended to hyperbolic manifolds having constant curvature and considering
target sets which are balls of the base manifold3.

Results similar to equation (1.3) using the Hausdorff dimension instead of the invariant
measure (a ‘Yarnik type’ result) were given in [3] (see also [10]). Logarithm laws for flows in
other contexts were given for example by [1, 6, 15] (see also the survey [2]).

In this paper we consider fast mixing flows and give estimates for the time which is
needed to hit a given target, in the spirit of equation (1.4). Equations like (1.4) then easily give
logarithm laws like (1.3), and even more precise results (see proposition 4.9).

A main ingredient in this work is the speed of decay of correlations. It is nowadays well
known that many aspects of the statistical behaviour of a deterministic chaotic system can be
described by suitable versions of theorems from the classical theory of probability (central
limit, large deviations, etc); in the proof of those theorems, the independence assumption,
which is made in the probabilistic context, is often replaced by weaker assumptions, also
regarding the speed of correlation decay, which in turn is related to the spectral properties of
the system. This strongly motivates the study of decay of correlations and spectral properties
as a tool to deduce many other consequences.

A general aim of the paper is to show how logarithm laws (and some more precise shrinking
target results) can follow directly from fast decay of correlation of the flow.

We will use decay of correlation with respect to Lipschitz observables. We say that the
system has decay of correlation with speed α with respect to Lipschitz observables if for each
f, g : M → R, Lipschitz functions∣∣∣∣

∫
g(φt (x))f (x)dµ −

∫
g(x)dµ

∫
f (x)dµ

∣∣∣∣ � C ‖g‖ ‖f || α(t) (1.5)

3 To be more precise, as we will see in the following, the target sets on the space where the dynamics act (the tangent
bundle to our manifold) are the preimages of balls under the natural projection of the fibration.
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where α(t) → 0 and ||.|| is the Lipschitz norm. We say that the speed of correlation decay is
superpolynomial if limt→∞ tγ α(t) = 0, ∀γ > 0.

In theorem 2.1 we will see that if the system has superpolynomial speed of decay of
correlations as above, the time which is needed to cross a small transverse section is related
to the measure of the set of points which are sent to the section in a time less than ε, in a sense
similar to equation (1.4).

Moreover in proposition 2.5 we will see another general tool, allowing a logarithm law to
be established for a flow once we are able to obtain it on a suitable Poincaré section, with the
induced map.

As an application of theorem 2.1 we show (see theorem 4.2 and the propositions that
follow) a Maucourant type result (see theorem 4.1) for (compact, connected) manifolds with
variable negative sectional curvature. This will be a consequence of the above cited theorem 2.1
and of the exponential decay of correlation of the geodesic flow of such manifolds, which was
sharply estimated in [13].

2. Logarithm law, superpolynomial decay, Poincaré sections

Let M be a differentiable manifold and let �t be a C1 flow in M . Let A ⊂ M be a set. Let us
consider the hitting time τ(x, A) of the orbit of x to the set A as defined in equation (1.1).

We present the main general tool of the paper. A logarithm law is established, in flows
having fast enough decay of correlation.

Theorem 2.1. Suppose that �t as above preserves a measure µ and has superpolynomial
decay of correlations with respect to Lipschitz observables. Let V be a submanifold of M

which is transverse to �t . Let f : M → R
+ be a Lipschitz function, let us consider the target

family

Bl = {x ∈ V, f (x) < l} (2.1)

and suppose that Bl is bounded for some l > 0. Let

Cε,l = {x ∈ X, s.t. �t (x) ∈ Bl, 0 � t < ε}. (2.2)

Suppose that the following limit exists4

d = lim
ε→0

lim
l→0

log µ(Cε,l)

log l
(2.3)

then

lim
l→0

log τ(x, Bl)

− log l
= d (2.4)

for µ-almost each x.

We remark that there are mixing, smooth flows for which logarithm laws and similar
results do not hold (see [7]), hence in a result like theorem 2.1 some assumptions on the speed
of decay of correlations are important.

The proof is based on a result about discrete time systems we are going to recall: let
(X, T , µ) be an ergodic, measure preserving transformation on a metric space X. Let us
consider a family of target sets Sr indexed by a real parameter r and the time needed for the
orbit of a point x to enter in Sr

τT (x, Sr) = min{n ∈ N
+ : T n(x) ∈ Sr}.

4 It is easy to see that since the measure is preserved, the outer limit (ε → 0) always exists.
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Let us suppose that the target sets are of the form Sr = {x ∈ X, f (x) � r} where
f : X → R

+ is a Lipschitz function and let us consider the limits

d(f ) = lim sup
r→0

log µ(Sr)

log(r)
, d(f ) = lim inf

r→0

log µ(Sr)

log(r)
. (2.5)

These limits represent a sort of local dimension (the formula for the local dimension of µ at
a point x0 is obtained when f (x) = d(x, x0)). When the above limits coincide, let us set
d(f ) = d(f ) = d(f ). With this setting, in [5], the following result is proved:

Proposition 2.2. Let f and Sr be as above. Then for a.e. x

lim sup
r→0

log τT (x, Sr)

− log r
� d(f ), lim inf

r→0

log τT (x, Sr)

− log r
� d(f ). (2.6)

Moreover, if the system has superpolynomial decay of correlations, as above, and d(f ) exists,
then for a.e. x it holds

lim
r→0

log τT (x, Sr)

− log r
= d(f ). (2.7)

Now, we are ready to prove theorem 2.1.

Proof (of theorem 2.1). Let us suppose ε so small that d is near to

lim
l→0

log µ(Cε,l)

log l
.

First note that we can suppose that µ(Cε,l) → 0 (as l → 0), if not so, passing to the limit, we
have d = 0. On the other side, since the system is ergodic τ(x, Bl) is bounded, giving also

lim
l→0

log τ(x, Bl)

− log l
= 0.

Now, for ε � 0, let us denote by C−ε,l the set {x ∈ X, s.t. �t (x) ∈ Bl, 0 � t > −ε}.
Consider D = C2ε,l ∪C−ε,l and define a projection pr : D → Bl induced by the flow. Let

us consider the time needed for a point of D to reach Bl , following the flow or its inverse

t(x) =
{

min{t � 0|�t(x) ∈ V } if x ∈ C2ε,l

max{t � 0|�t(x) ∈ V } if x ∈ C−ε,l

(t : D → R). Let us now define the projection pr (x) = �t(x)(x).
Since the flow is transverse to V and Bl is compact for l small enough, we can choose ε

and l so small that we can apply the flow box theorem inside Cε,l and pr is Lipschitz map.
Now, to apply proposition 2.2 we need to define a Lipschitz function F such that the

sets Cε,l are contained in its sublevels. To do this let us first define hε : D → R
+ by

hε(x) = ϕε(t(x)), where

ϕε(t) =



−l/ε · t if t < 0
0 if 0 � t � ε

l/ε · (t − ε) t � ε.

Finally define F : M → R
+ by

F(x) =
{
l, if x /∈ D

max(f (pr(x)), hε(x)) if x ∈ D.

Since pr and all the other involved functions are Lipschitz then also F is. Fixing

ε, as l varies the sets Cε,l are contained in the sublevels Sl = F
−1

([0, l]). Note that
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µ(Cε,l) � µ(Sl) � 3µ(Cε,l). We can consider the discrete time system induced by the
time-ε map of the flow. Let τε(x, B) = min{n > 0, �nε(x) ∈ B} be the hitting time for the
time-ε map induced by the flow. Applying proposition 2.2 (equation (2.7)) to these sets we
obtain that for µ-almost each x

lim
l→0

log τε(x, Sl)

− log l
= lim

l→0

log(µ(Sl))

log l
= lim

l→0

log µ(Cε,l)

log l
. (2.8)

Let us consider S = ∩lSl , in a way similar as before, remark that if µ(S) > 0 then
liml→0

log(µ(Sl))

log l
= 0. Moreover, since the system is ergodic, τ(x, Bl) is eventually constant

and also
log τ(x, Bl)

− log l
→ 0

a.e. and the wanted result is proved.
Hence it remains to consider the case µ(S) = 0. In this case we can suppose x /∈ Sl for

some l small enough, which is a full measure condition.
Considering that if �ετε(x,Sl )(x) ∈ C−ε,l and x /∈ Sl then the flow starting from x has

already hit Bl before arriving to �ετε(x,Sl )(x) we have that

τ(x, Bl) � ετε(x, Sl) + 2ε. (2.9)

On the other hand, since �ε
 τ(x,Bl )

ε
�(x) ∈ Cε,l ⊂ Sl then

τε(x, Sl) �
⌊

τ(x, Bl)

ε

⌋
(2.10)

(where 
 � stands for the integer part), and

τε(x, Sl) � τ(x, Bl)

ε
+ 1. (2.11)

Supposing �tx /∈ ∩lCε,l for each t � 0, which is a full measure condition (recall that we
suppose µ(Cε,l) → 0) we then have by (2.9) and (2.11).

lim
l→0

log τε(x, Sl)

− log l
= lim

l→0

log τ(x, Bl)

− log l

for µ-almost each x, and together with (2.8) we have the desired result. �

Remark 2.3. We remark that the boundedness and the transversality assumptions on Bl are
used in the proof only to obtain that pr is a Lipschitz map. Hence, if this can be obtained
elsewhere, the result still holds.

Remark 2.4. By the same proof, using equation (2.6) it easily follows that in general measure
preserving flows

lim sup
l→0

log τ(x, Bl)

− log l
� lim

ε→0
lim sup

l→0

log µ(Cε,l)

log l
, (2.12)

lim inf
l→0

log τ(x, Bl)

− log l
� lim

ε→0
lim inf

l→0

log µ(Cε,l)

log l
. (2.13)

We will prove now a complementary result that deals with Poincaré maps of a flow. With
this result we can obtain the logarithm law for the flow, provided we establish it for the induced
Poincaré map on a section and the return time is integrable. This will not be used in what
follows, the uninterested reader can jump to the next section.

Let X be a metric space, and �t be a measure preserving flow and 	 be a section of
(X, �t); we will show that if the flow is ergodic and the return time is integrable, then the
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hitting time scaling behaviour of the flow can be estimated by the one of the system induced on
the section. Hence we can have a logarithm law for the flow if we can prove it on the section
(with the induced return map).

Given any x ∈ X let us denote with t (x) the smallest strictly positive time such that
�t(x)(x) ∈ 	. Let also consider t ′(x), the smallest non-negative time such that �t ′(x)(x) ∈ 	.
We remark that these two times differ on the section 	, where t ′ = 0 while t is the return time
to the section. We define π : X → 	 as π(x) = �t ′(x)(x), the projection on 	. Let us also
denote by µF the invariant measure for the Poincaré map F which is induced by the invariant
measure µ of the flow.

Proposition 2.5. Let us suppose that the flow �t is ergodic and has a section 	 with an induced
map F and invariant measure µF such that∫

	

t (x) dµF < ∞.

Let r � 0 and Sr ⊆ 	 be a decreasing family of measurable subsets with limr→0 µF (Sr) = 0.
Let us consider the hitting time relative to the Poincaré map

τ	(x, Sr) = min{n ∈ N
+; Fn(x) ∈ Sr}. (2.14)

Then, there is a full measure set C ⊆ X such that if x ∈ C

lim inf
r→0

log τ(x, Sr)

− log r
= lim inf

r→0

log τ	(π(x), Sr)

− log r
, (2.15)

lim sup
r→0

log τ(x, Sr)

− log r
= lim sup

r→0

log τ	(π(x), Sr)

− log r
. (2.16)

Proof. Since (X, �t , µ) is ergodic, then (	, F, µF ) is ergodic. Let S0 = ⋂
r>0 Sr , by

hypothesis µF (S0) = 0 and the set A′ = 	 − ∪i�0F
−i (S0) has full measure. Let us consider

the set A′′ ⊂ 	 where ∀x ∈ A′′

1

n

n∑
i=0

t (F i(x)) −→
∫

	

t (x) dµF . (2.17)

By the pointwise ergodic theorem this set has full measure. Now let us set A = A′ ∩ A′′.
Let us first assume that x ∈ A ⊆ 	. Then τ	(x, Sr) and τ(x, Sr) are related by

τ(x, Sr) =
τ	(x,Sr )−1∑

i=0

t (F i(x)). (2.18)

If x ∈ A (recalling that since x ∈ A′ then τ	(x, Sr) → ∞ as r → 0) then

1

τ	(x, Sr)

τ	
r (x,Sr )−1∑

i=0

t (F i(x)) −→
∫

	

t (x) dµF .

Thus

τ(x, Sr) =
τ	
r (x,Sr )∑
i=0

t (F i(x)) = c(x, r) · τ	(x, Sr) ·
∫

	

t (x) dµF (2.19)

with c(x, r) → 1 as r → 0. The same is also true for each x ∈ π−1(A) which is a full measure
set. Extracting logarithms and taking the limits, we get the required result. �

By proposition 2.2, in the case where the induced map is superpolynomially mixing this
implies the following.
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Corollary 2.6. Under the above assumptions suppose that the induced system on 	 has
superpolynomial decay of correlations with respect to Lipschitz observables. Let f : 	 → R

+

be a Lipschitz function and let

Bl = {x ∈ 	, f (x) < l}. (2.20)

Suppose that the following limit exists

d = lim
l→0

log µ(Bl)

log l
(2.21)

(µ is the invariant measure induced on the section) then there is a full measure set C ⊆ X

such that if x ∈ C.

lim
l→0

log τ(x, Bl)

− log l
= d. (2.22)

3. Decay of correlations for contact Anosov flows

We recall some basic definition and some properties of contact Anosov flow. These will be
used when dealing with the geodesic flow of a negatively curved manifold.

Definition 3.1. Let M be a 2n + 1-dimensional manifold. If M admits a 1-form α such that
α ∧ (dα)n �= 0, then M is said to be a contact manifold. The hyperplane distribution ker α is
called the contact distribution.

Definition 3.2. Given a flow �t on (M, α), we call it a contact flow if it preserves the contact
form, i.e. α(d�tv) = α(v). Moreover if its infinitesimal generator V is such that α(V ) = 1
and dα(V, v) = 0 for every vector field v we will call it a Reeb vector field.

The natural invariant measure for the flow is nothing else than the measure induced by the
volume form α ∧ (dα)n. We will denote this measure as µ. We refer to [8] for the basic facts
about contact manifolds (and much more). A Reeb vector field, by definition, is transverse to
the contact distribution, i.e. ker(αx) ⊕ V (x) = TxM for every x in M .

Definition 3.3. A flow � is said to be Anosov, if at each point x the tangent space TxM can
be split into a direct sum TxM = Eu

x ⊕ E0
x ⊕ Es

x , respectively, called unstable, central and
stable directions such that the splitting is invariant with respect to the action of the flow, E0

x is
one dimensional and coincides with the direction of the flow and there are A, B > 0 such that

||d�t(v)|| � Ae−Bt ||v|| for each v ∈ Es
x and t � 0

||d�t(v)|| � Ae−Bt ||v|| for each v ∈ Eu
x and t � 0

In [13] the following nontrivial fact is proved.

Theorem 3.4 (Exponential decay of correlations for contact Anosov flows). Let M be a
C4, 2d + 1 connected compact manifold and let us consider be a C4 flow �t : M → M

defined on it. Suppose this flow is Anosov and that it preserves a contact form. Then, there
exist constants C1, C2 such that for each α-Hölder functions ϕ, ψ on M ,∣∣∣∣

∫
φ ◦ �tψ dµ −

∫
φ dµ

∫
ψ dµ

∣∣∣∣ � C1||φ||α||ψ ||αe−C2t .

In the above equation ||.||α represents the Hölder norm. Given a Riemannian manifold,
the geodesic flow on the unit tangent bundle is a contact flow and its infinitesimal generator
is a Reeb vector field; moreover, such a contact flow is Anosov in the case of Riemannian
manifolds with negative sectional curvature (see [11], chapter 17.6). Altogether, this simply
means that the following holds.
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Corollary 3.5. The geodesic flow �t of a C4 compact connected manifold with strictly negative
sectional curvature is exponentially mixing with respect to Hölder observables as above.

4. Logarithm law for the geodesic flow

Let M be an hyperbolic manifold (with constant negative curvature) of dimension n and T 1M

be its unitary tangent bundle. Let π1 : T 1M → M be the canonical projection, �t be the
geodesic flow on T 1M , µ the Liouville measure on T 1M , and d the Riemannian distance on
M. In [16] the following result is proved.

Theorem 4.1 (Maucourant). For all p ∈ M and µ almost each v ∈ T 1M

lim sup
t→∞

− log d(p, π(�tv))

log t
= 1

n − 1
. (4.1)

We now apply theorem 2.1 to obtain a version of theorem 4.1 for compact manifolds with
variable negative sectional curvature.

We remark that results of this kind are also stated in CAT (−1) spaces, and proved with
completely different techniques [9].

To apply theorem 2.1, we have to find suitable transversal sections to the flow, which can
take account of the intersection of a geodesics with the ball centred at the target point on the
base manifold. We fix now some notation that is used throughout the section; again denote by
M a Riemannian manifold with metric g and negative sectional curvature, by π : T M → M its
tangent bundle, by π1 : T 1M → M its unitary tangent bundle. A coordinate neighbourhood
of M , (U, x1, . . . , xn) is centred in a point p when x1(p) = x2(p) = · · · = xn(p) = 0,
fixed a coordinate neighbourhood centred at p it is understood that we will denote the point p

also as the point 0. When we deal with a point q on the tangent bundle T M , and we restrict
ourselves to a trivializing neighbourhood, we shall use without any remark the notation (x, v)

to denote its coordinates in the local trivialization. Another assumption we make is that, when
we choose a trivializing neighbourhood for T M , this induces a coordinate system on T 1M so
that the standard contact form α is written in coordinates as

∑n
i,j=1 gij (x)vidxj , where gij is

the matrix of the metric.
The following estimation of the hitting time of the geodesic flow will imply an equation

similar to (4.1) (and some even more precise result).

Theorem 4.2. Let �t be the geodesic flow on the unitary tangent bundle of M , n-dimensional
compact, connected manifold with negative sectional curvature. Let us fix p ∈ M and let
f : T 1M → R be given by f (q) = d(π1(q), p), where d is the Riemannian distance on M .
Let us denote

Ur(p) = {q ∈ T 1M, f (q) < r}
and by τ(q, Ur(p)) as before, the time needed for a point q in T 1M to reach Ur(p) under the
action of the flow. We have that for almost every point q in T 1M

lim
r→0

log(τ (q, Ur(p)))

− log(r)
= n − 1.

Remark 4.3. Please remark that π1(Ur(p)) is the geodesic ball centred at p in M; therefore,
given a point q in T 1M we have that τ(q, Ur(p)) coincides with the time which is needed for
a geodesic on M having initial data q to enter in the ball Br(p).

To prove the theorem we have to find a suitable section where to apply theorem 2.1. In
the following lemma we define it and prove that it is a submanifold of T 1M .
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Lemma 4.4. Let (U, x1, . . . , xn) be a coordinate neighbourhood centred in p, such
neighbourhood is a trivializing neighbourhood for π : T M → M . We denote by
(x1, . . . , xn, v1, . . . , vn) the coordinates on π−1(U). Let h be the function from π−1(U) → R

given in coordinates by

h(x, v) =
n∑

i,j=1

gij (x)xivj ,

where the gij are the coefficients of the Riemannian metric on T M . Then, there exists an open
subset of U , that, by abuse of notation, we shall denote again by U , such that

T (p) := h−1(0) ∩ T 1M ∩ π−1(U)

is a submanifold of T 1M .

Proof. The proof of this fact is an application of the submersion theorem and we report it for
completeness. We have that

T 1M ∩ π−1(U) = {(x1, . . . , xn, v1, . . . , vn) | ||v|| = 1}.
First of all we remark that h−1(0) is not a submanifold of π−1(U) (inside T M). Indeed, we
compute the differential of h:

dh =
n∑

k=1

( n∑
i,j=1

∂gij

∂xk
xivj + gkjv

j

)
dxk +

n∑
i,j=1

gij x
idvj ;

as it is, this differential is not surjective for every point of h−1(0) and we cannot apply the
submersion theorem; the counterimage of 0 through h is not a submanifold. To see this,
simply remark that dh(0,0) = 0. Now we think of T 1M as the submanifold of T M given as
the counterimage of n−1(1) where n is given in coordinates as n(x, v) = ∑n

i,j=1 gij (x)vivj .
What we want to prove is that for every point (0, v) in π−1(0) we have that ker(dh(0,v)) is not
contained in T(0,v)T

1M; therefore, for every point in π−1
1 (0), dh is surjective and we can apply

the submersion theorem. If we restrict ourselves to π−1
1 (0), since all the xi are 0, we have that

dh takes the form:

dh

∣∣∣∣
π−1

1 (0)

=
n∑

i,j=1

gij (0)vj dxi;

We compute also

dn(0,v) =
n∑

k=1

n∑
i,j=1

∂gij

∂xk
(0)vivj dxk +

n∑
i,j=1

gij (0)vi dvj .

We prove the claim showing that for each point (0, v) we have that dn(0,v) and dh(0,v) are linearly
independent; to show this we make some assumptions. As we said already, the coordinate chart
is centred in p and we are working on π−1

1 (0); moreover, we can take a coordinate system
such that gij (0) = δij , i.e. a coordinate system in which the coordinate fields are orthogonal
in the origin (they cannot be orthogonal in a neighbourhood of the origin unless M is flat). In
this coordinate system we have that

dh(0,v) =
n∑

k=1

vkdxk
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and

dn(0,v) =
n∑

k=1

n∑
i,j=1

(
∂gij

∂xk
vivj

)
dxk +

n∑
i=1

vidvi.

To prove these two sections are linearly independent is the same as proving that the following
matrix has rank 2:


n∑

i,j=1

∂gij

∂x1
vivj · · ·

n∑
i,j=1

∂gij

∂xn
vivj v1 · · · vn

v1 · · · vn 0 · · · 0


 .

Since T 1M0 = {v ∈ T M0 | ∑n
i=1(v

i)2 = 1} we have that the determinant (vk)2 of at least one
of the 2 × 2 minors of the form


n∑

i,j=1

∂gij

∂xk
vivj vk

vk 0




is different from 0. From the submersion theorem we have that for each point (0, v) in π−1
1 (0)

there exists an open set V(0,v) in T 1M|U on which h is a submersion. Since π−1
1 (0) is compact,

we can find a finite collection of open sets V(0,vi ) whose union is a neighbourhood V of π−1
1 (0)

and where h is a submersion. Therefore, we can rescale U so that h−1(0) ∩ T 1M ∩ π−1(U)

is a well defined submanifold of T 1M . �

Lemma 4.5. In the hypothesis of lemma 4.4, there exists an l̄ such that for every l < l̄ we
have that

Tl(p) = {q ∈ T (p), f (q) < l}
is transverse to the flow.

Proof. Consider the submanifold T (p) ⊂ T 1M . For each point in π−1
1 (0) (and only for these

points) we have that the tangent space to T (p) is given by the kernel of dh|(0,v) ≡ α(0,v), where
α is the contact form; therefore, T (p) is transversal to the geodesic flow on π−1

1 (0). For each
point q in π−1

1 (0) we can take an open neighbourhood Vq where the flow is transverse to T (p);
since π−1

1 (0) is compact we can extract a finite cover Vqi
; we take now

l̄ = min
i

sup
q̃∈Uqi

f (q̃);

for each l < l̄ we have that Tl(p) is transverse to the geodesic flow. �

Remark 4.6. Please remark that for l small enough π1(Tl(p)) is a geodesic ball of radius l.
Indeed if we take a geodesic ball Bl̃(p) of radius l̃ and fix an x in Bl(p) we can solve the linear
homogeneous equation

∑n
i=1 gij (x)xivj = 0 in the unknown v; this is equivalent to finding a

vector in the orthogonal complement to the vector wj = (gij (x)xi)j in R
2n with the canonical

scalar product, since the canonical scalar product is nondegenerate such a vector exists. If we
chose the radius l̃ small enough the couple (x, v) belongs to Tl̃(p).

We can now prove theorem 4.2.
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Proof (of theorem 4.2). We found a suitable transverse section to the flow and we know that
the flow is superpolynomially mixing (see corollary 3.5) so we are in the condition to apply
theorem 2.1. To this extent we have to evaluate the right hand of (2.4).

The invariant volume form ω = α ∧ (dα)n−1 of T 1M takes the form

ω = α ∧ (dα)n−1 = det(ghk(x))

n∑
i=1

(−1)ivi dv1 ∧ · · · ∧ d̂vi ∧ · · · ∧ dvn ∧ dx1 ∧ · · · ∧ dxn,

where det(ghk(x)) is the determinant of the matrix of the metric.
We cover Tl(p) by open sets

Vi =
{
(x1, . . . , xn, v1, . . . , vn) ∈ Tl(p)

∣∣∣∣
n∑

k=1

gikv
k �= 0

}
,

on each Vi a point (x, v) of Tl(p) has ith coordinate

xi(x1, . . . , x̂i , . . . , xn, v1, . . . , vn) =
−

n∑
j,k=1;j �=i

gjkx
j vk

n∑
k=1

gikv
k

,

where the hat means we are not taking the coordinate into consideration. We can give also
explicitly a partition of unity {φi} subordinate to the cover Vi , by defining

φi := vi

n∑
j=1

gij v
j =

n∑
j=1

gij v
ivj ;

clearly
∑n

i=1 φi = 1.
We can apply the flow box theorem to the geodesic flow and build an atlas for Cε,l where

the coordinate neighbourhoods are given by

Wi := {�−t (q) | q ∈ Vi, t ∈ [0, ε)},
with partition of unity {ψi}, the pull-back through the flow of the partition of unity {φi}. By
definition ∫

Cε,l

ω =
∑

i

∫
Wi

ψi · ω.

The coordinates for Cε,l are induced on each Wi by the geodesic flow:

(x1, . . . , x̂i , . . . , xn, v1, . . . , vn, t) �→
�−t (x1, . . . , xi(x1, . . . , x̂i , . . . , xn, v1, . . . , vn), . . . , xn, v1, . . . , vn).

Through a linear change of coordinates, we can choose coordinates such that the matrix of the
metric is such that, over the point p, it is represented in coordinates by the identity matrix; as
remarked above we can do this in the fibre over the point p but not in a neighbourhood of this
fibre since this is equivalent to flatness.

From basic properties of the geodesic flows it follows that, if we take any point q = (0, w)

in the fibre over p, we have that, for every k = 1, . . . , n

∂xk

∂t
(q) = wk,

∂vk

∂t
(q) =

∑
i,j

�k
i,j (π1(q))wiwj ,
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where �k
i,j are the Christoffel symbols of the metric. Moreover, if j = 1, . . . , i−1, i+1, . . . , n,

k = 1, . . . , n, l = 1, . . . , n

∂xj

∂xk
(q) = δ

j

k ,
∂xj

∂vk
(q) = 0,

∂vl

∂vk
(q) = δl

k,
∂vl

∂xk
(q) = 0,

where δl
k = 1 if k = l and 0 otherwise. Now, on each Wi , if k varies in 1, . . . , n we have that

∂xi

∂xk
(q) = wk

wi
,

∂xi

∂vk
(q) = xk

wi
.

If we compute the determinant of the n × n matrix given by

[∂xk/∂xj (q)|∂xk/∂t (q)]

we see it is 1/wi . This implies that, on Wi , if ε and l are small enough, the pull-back of the
volume form through this coordinate change, near the fibre over p, can be written as

1

vi

n∑
j=1

(−1)j vj dv1 ∧ · · · ∧ d̂vj ∧ · · · ∧ dvn ∧ dx1 ∧ . . . ∧ d̂xi ∧ . . . ∧ dxn ∧ dt + ω′(ε, l)

where ω′(ε, l) is a 2n − 1 form tending to 0 as ε, l → 0. This implies that the integral∫
Wi

ψi · ω = K1 · ε · ln−1 + higher order terms in ε and l,

where K1 is a constant. This tells us that

µ(Cε,l) = K2 · ε · ln−1 + higher order terms in ε and l,

where K2 is a constant. Therefore

lim
ε→0

lim
l→0

log µ(Cε,l)

log l
= n − 1.

Then theorem 2.1 implies that

lim
r→0

log τ(q, Tr(p))

− log r
= lim

ε→0
lim
l→0

log µ(Cε,l)

log l
= n − 1,

for almost every q in T 1M .
The geodesics are parametrized by arclength and therefore the time of the flow coincides

with the length of the geodesic. Let us take a typical point q in T 1M . We have that for r small
enough

τ(q, T2r (p)) − r � τ(q, Ur(p)) � τ(q, Tr(p)).

Consequently

lim
r→0

log(τ (q, Tr(p)))

− log(r)
= lim

r→0

log(τ (q, T2r (p)) − r)

− log(2r)

� lim
r→0

log(τ (q, Ur(p)))

− log(r)
� lim

r→0

log(τ (q, Tr(p)))

− log(r)
.

And the statement is established. �

With similar methods we can also have other results. In the next proposition we look for
the behaviour of the time needed for a geodesics to reach a certain point on the base space,
arriving from a prescribed direction, as it is intuitive, in this case the exponent is much bigger.
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Proposition 4.7. In the same assumptions of theorem 4.2, let us fix p ∈ T 1M and let dS be
the Riemannian distance on T 1M with respect to the Sasaki metric (the natural metric on the
tangent bundle). Let us denote

B̃r (p) = {q ∈ T 1M, dS(q, p) < r},
the geodesic ball in T 1M with radius r , and by τ(q, B̃r (p)) as before, the time needed for a
point q in T 1M to reach B̃r (p) under the action of the flow. We have that for almost every
point q in T 1M

lim
r→0

log(τ (q, B̃r (p)))

− log(r)
= 2n − 2.

Proof. In this case we take any transverse, differentiable section to the geodesic flow and we
take the intersection of B̃r (p) with this section and denote it by T̃r (p); on this target we build
the cylinder C̃ε,l . Following the line of theorem 4.2, we see that

lim
ε→0

lim
r→0

log µ(C̃ε,r )

log r
= 2n − 2.

Now, theorem 2.1 implies

lim
r→0

log τ(q, T̃r (p))

− log r
= lim

ε→0
lim
r→0

log µ(C̃ε,r )

log r
= 2n − 2.

Which easily gives the statement as above. �
Theorem 4.2 gives an estimation for the hitting time of particular sets for the geodesic flow.

Now we consider the behaviour of the distance between the orbit of the typical point q and
the target point p, which is the ‘centre’ of the set. This will give the following generalizations
and extensions of the above cited theorem 4.1.

Proposition 4.8. Let M be a compact, connected, C4 manifold of dimension n with strictly
negative sectional curvature and T 1M be its unitary tangent bundle. Let π1 : T 1M → M be
the canonical projection, µ the Liouville measure on T 1M , and d the Riemannian distance
on M, then for each p ∈ M

lim sup
t→∞

− log d(p, π1(�
tq))

log t
= 1

n − 1
(4.2)

holds for µ almost each q ∈ T 1M.

Proof. Let dt (q, p) = infs�t d(π1(�
s(q)), p). By the ergodicity of the flow dt → 0 as

t → ∞. Without loss of generality we can suppose that for t big enough dt (q, p) = t−α(t).
By theorem 4.2

lim
t→∞

log τ(q, Ut−α(t) )

− log(t−α(t))
= n − 1,

if t is big enough, ∀ε > 0, then

tα(t)(n−1)−α(t)ε � τ(q, Ut−α(t) ) � tα(t)(n−1)+α(t)ε (4.3)

but by the way α is defined τ(q, Ut−α(t) ) � t ; hence tα(t)(n−1)−α(t)ε � t , α(t)(n−1)−α(t)ε � 1
and α(t) � 1

n−1−ε
. This implies that

lim sup
t→∞

− log dt (p, π1(�
tq))

log t
� 1

n − 1
. (4.4)
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On the other hand there are infinitely many t such that τ(q, Bt−α(t) ) = t . This, with
the same computations as above implies the statement since dt � d and dt = d

when τ(q, Bt−α(t) ) = t . �

Our estimation of the hitting time also allows one to state a relation which can be seen as
a strong form of the logarithm law given in (1.3) and (4.1).

Proposition 4.9. Under the assumptions of the above proposition 4.8, let

dt (q, p) = inf
s�t

d(π1(�
s(q)), p)

then for each p ∈ M

lim
t→∞

− log dt (p, π1(�
tq))

log t
= 1

n − 1
(4.5)

holds for almost each q ∈ T 1M .

Proof. After proposition 4.8 (see equation (4.4)), it is sufficient to prove

lim inf
t→∞

− log dt (p, π1(�
tq))

log t
� 1

n − 1
.

Suppose the converse is true: there is a sequence ti such that

lim
i→∞

− log dt (p, π1(�
ti q))

log ti
<

1

n − 1
.

Then there exist an ε > 0 such that

dt (p, π1(�
ti q)) > t

1
−n+1−ε

i

and then

τ(q, U
t

1
−n+1−ε

i

) > ti .

Setting li = t
1

−n+1−ε

i , this gives τ(q, Uli ) > l−n+1−ε
i and

log τ(q, Uli )

− log li
> n − 1 + ε

contradicting

lim
t→0

log τ(q, Ut )

− log(t)
= n − 1,

and therefore proving the theorem. �
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