
Journal of Statistical Physics         (2023) 190:192 
https://doi.org/10.1007/s10955-023-03174-8

Rigorous Computation of Linear Response for Intermittent
Maps

Isaia Nisoli1 · Toby Taylor-Crush2

Received: 13 May 2022 / Accepted: 29 September 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
We present a rigorous numerical scheme for the approximation of the linear response of the
invariant density of a map with an indifferent fixed point with respect to the order of the fixed
point, with explicit and computed estimates for the error and all the involved constants.

Keywords Linear response · Intermittent maps · Transfer operators · Rigorous
approximations

Mathematics Subject Classification Primary 37A05 · 37E05

1 Introduction

In [43] Ruelle proved that for certain perturbations of uniformly hyperbolic deterministic
dynamical systems the underlying SRB measure changes smoothly. He also obtained a for-
mula for the derivative of the SRB measure, called the linear response formula [43].1 Since
then, the topic of linear response has been a very active direction of research in smooth
ergodic theory. Indeed, the work of Ruelle was refined in the uniformly hyperbolic setting
[12, 28], extended to the partially hyperbolic setting [18], and has been a topic of deep inves-
tigation for unimodal maps, see [8], the survey article [9], the recent works [3, 10, 17, 44]
and references therein. More recently, the topic of linear response was also studied in the

1 See also earlier related work [33]. See also [27] for a comprehensive historical account including literature
from physics.
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context of random or extended systems [7, 19, 21, 24, 35, 45, 50]. Optimisation of statistical
properties through linear response was developed in [1, 2, 23, 34].

Numerical algorithms for the approximation of linear response for uniformly expanding
maps, via finite rank transfer operators were obtained in [6] and via dynamical determinants
and periodic orbits in [42],2 and for uniformly hyperbolic systems in [29, 39, 40].

We wish to study the linear response of intermittent maps. Numerical work has also been
done for the invariant densities of intermittent maps in [5] where an Ulam method is used,
and in [49] where very high precision is reached by the use of Abel functions. Our work
extends the methods in [6] to intermittent maps away from the boundary, and possibly really
far from the boundary with sufficient computing power, allowing us to compute the linear
response for LSV maps, a version of the Manneville-Pomeau family [38], as the exponent at
the indifferent fixed point changes.

Our algorithm permits rigorous control of all the numerical and discretization errors;
some non rigorous numerical schemes have been proposed in the applied community for the
computation of response in the uniformly hyperbolic setting [14, 15, 40, 41], and rely on the
hyperbolicity of the system for the proof of their convergence; we do not know if they can be
extended to the intermittent case, due to the singular behaviour of the invariant density and
their non-uniform hyperbolicity but our result may be used as a reliable benchmark.

Linear response for indifferent fixed point maps has been investigated in [4, 11, 36], but
three important questions have to be addressed to obtain a rigorous numerical approximation
scheme:

(1) how to approximate efficiently the involved discretized operators;
(2) how to bound the approximation errors involved in the discretization;
(3) how to bound explicitly and efficiently the constants used in the proofs of [4, 36].

In our paper we provide answers to the three questions above for general intermittent maps
and present an explicit computation for LSV type maps, obtaining the following result.

Theorem 1.1 (Main numerical result) Let

Tα(x) =
{
x(1 + 2αxα) if x ∈ [0, 1

2 ]
2x − 1 if x ∈ ( 12 , 1]

;

let α0 = 1/8 and for ε ∈ (−ε, ε) denote by hε the a.c.i.p. of Tα0+ε .
We can explicitly compute a piecewise constant function

h∗
η(x) =

1/η∑
i=0

viχ[iη,(i+1)η)(x)

such that

lim
ε→0

∣∣∣∣
∣∣∣∣hε − h0

ε
− h∗

η

∣∣∣∣
∣∣∣∣
1

≤ 0.01501

Moreover, the algorithm and estimates developed work for any α0 ∈ (0, 1) and allow the
error to be made as small as wanted, theoretically.

The first question is addressed in two steps, firstly in Sect. 3.2, with the induced map
in mind, we first bound the distance with respect to adequate norms, between the transfer

2 See also [32] for related work on dynamical determinants.
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operator of a map with infinite branches and an approximating map with finitely many
branches.

Then we use a matrix defined by a projection, onto a finite dimensional space, so that the
invariant density is close to that of the original map’s. For calculating the invariant density
for the induced map, in Sect. 3.3, a Chebyshev interpolation is shown to give us a good
approximation, however for calculating the linear response in Sect. 4 we require at some point
an approximation of an integrable unbounded function, for which the polynomial Chebyshev
interpolation is not the best tool, and for which we use an Ulam like approximation.

For the second question, error of the finite branch approximation is addressed in Lemma
3.3, while the error from the Chebyshev interpolation is addressed in theorems 3.12, 3.13
and 3.14. The error in the Ulam like discretisation is addressed in Lemma 4.2.

The final question is addressed in Appendix.
Our scheme and techniques are very flexible and can be easily adapted to other one

dimensional non-uniformly expandingmapswhose associated transfer operators do not admit
a spectral gap (or a uniformspectral gap) as long as the linear response formula canbeobtained
via inducing with the first return map and the return times are summable.

In the text are presented some numerical remarks, that allow the reader to get an overview
of some of the delicate points of the implementation; we made a strong effort in allowing
readability of the code, with comment and citations in the source to the relevant theoretical
background.

1.1 Plan of the Paper

The paper is divided as follows: in Sect. 2 we state the hypothesis on the dynamical system
and state our results, in Sect. 3 we present the theory behind the approximation of the density
for the induced map, in Sect. 4 we discuss the approximation of the linear response for
the induced map, in Sect. 5 we discuss pulling back the measure to the original map and
normalizing the density, in Sect. 6 we give a proof of the fact that the error may be made as
small as wanted, in Sect. 7 we compute an approximation with an explicit error of the linear
response for an LSV map; Sect. 8 is devoted to computing effective bounds for the constants
in [4, 36] and Appendix A explains the technique we use to compute some of the functions
involved in our approximation.

2 Hypothesis on theMap and Statement of the Results

We are interested in approximating the invariant density and linear response for one
dimensional interval maps with an indeterminate fixed point by inducing as the order of the
fixed point changes.

In particular we wish to gain explicitly calculable error bounds in the L1 norm. We use
an induced map on [0.5, 1], to gain a map with good statistical properties to approximate
an invariant density and linear response, and then using a formula used in [4] to pull back
our approximation to the invariant density and linear response of the full map. We apply this
method to a family of Pomeau-Manneville maps to gain an approximation of the statistics
with explicit error as can be seen in figure 1.

In this section we focus on the requirements on the dynamic that make the existence and
estimation of these statistical values possible and where appropriate the bounds from our
requirements can be found in Appendix for our example map.
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Fig. 1 Here we present the invariant density of the Pomeau-Manneville map with parameter α = 0.125. Once
with an unnormalised invariant density, as we calculate it, and the corresponding linear response, and once
where we impose that the invariant density should be normalised to an integral of 1 for all parameters near to,
and including, α

2.1 InducingMaps with an Indifferent Fixed Point

Here we define a family of non-uniformly expanding maps with an indifferent fixed point for
which we define a further family of induced maps. Here we focus on LSV maps however a
similar scheme for maps with more branches can be constructed along the same lines.

Definition 2.1 In the following, we will denote by (B, ‖.‖γ ) the Banach space defined as

B = { f ∈ C0(0, 1] | ‖ f ‖γ < +∞}
where ‖ f ‖γ = supx∈(0,1] |xγ f (x)| and γ > 0 is fixed.

Definition 2.2 We say a map S : [0, 1] → [0, 1] is a LSV map if

(1) S is nonsingular with respect to Lebesgue measure m,
(2) S has two onto branches, S0 : [0, 0.5) → [0, 1), and S1 : [0.5, 1] → [0, 1]
(3) S0 and S1 have inverses g0 and g1 respectively, and gi ∈ C3 for i = 0, 1,

Definition 2.3 Let V be a neighbourhood of 0, we say that a family of dynamical systems
depending on the parameter ε ∈ V is a family of LSV maps if for any ε ∈ V , Tε is a LSV
map.

Fixing notation, for each ε we will denote by T0,ε the first branch of Tε , by g0,ε its inverse
and follow the same convention for T1,ε , g1,ε .

We call T0 the unperturbed system.

Definition 2.4 Let V be a neighbourhood of 0, we say that a family of LSV maps inherits
the linear response from the induced system if the following are satisfied:

(1) for each i = 0, 1 and j = 0, 1, 2 the following partial derivatives exist and satisfy the
commutation relation

∂εg
( j)
i,ε = (∂εgi,ε)

( j). (2.1)

(2) We assume that Tε has a unique absolutely continuous invariant measure (acim) with a
density with respect to the Lebesgue measure denoted by hε .
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(3) Let � be the set of finite sequences of the form ω = 10n , for n ∈ N ∪ {0}. We set
gω,ε = g1,ε ◦ gn0,ε . Then for x ∈ [0, 1] we have T n+1

ε ◦ gω,ε(x) = x . For all ε ∈ V we
require the sets gω,ε(
) to form a partition of 
 up to a set of Lebesgue measure 0.

(4) For x ∈ [0, 1] the following regularity assumptions hold,

sup
ε∈V

sup
x∈[0,1]

|g′
ω,ε(x)| < ∞; (2.2)

sup
ε∈V

sup
x∈[0,1]

|∂εgω,ε(x)| < ∞; (2.3)

∑
ω

sup
ε∈V

‖g′
ω,ε‖B < ∞; (2.4)

and ∑
ω

sup
ε∈V

‖∂εg
′
ω,ε‖B < ∞, (2.5)

Remark 2.5 Assumption (1) guarantees thatwe can express the linear response formula (2.10)
in terms of the spatial derivative, assumptions (2) is self explanatory, and assumption (3)
guarantees a well behaved induced map. The assumptions of (4) are necessary for the proof
of Theorem 2.18 i.e. they allow us to prove that for each ε ∈ V there exists a unique invariant
density, and that we have some uniform bounds on the regularity of the density with respect
to ε.

Remark 2.6 We remark that Item (1) contains a regularity assumption on the dynamic.

Remark 2.7 The LSV map for α < 1 satisfies the hypothesis above, please note that they do
not work in the infinite measure case.

Definition 2.8 For each ε let T̂ε , be the first return map of Tε to 
, where 
 := [0.5, 1]; i.e.,
for x ∈ 


T̂ε(x) = T Rε (x)
ε (x),

where

Rε(x) = inf{n ≥ 1 : T n
ε (x) ∈ 
}.

Definition 2.9 We denote by Lε the Perron-Frobenius operator associated with Tε ; i.e.,
for ϕ ∈ L∞ and ψ ∈ L1 ∫

ϕ ◦ Tε · ψdm =
∫

ϕ · Lεψdm.

2.2 Expanding InducedMaps

Here we discuss a family of inducedmaps of the sort defined by the first return map discussed
in the previous section. The following follow from the assumptions on the original family of
{Tε}ε∈V .
Lemma 2.10 ([4], Properties of the induced map) For each ε ∈ V the induced map T̂ε : 
 →

 satisfies:

(1) the restriction of T̂ε to 
ω,ε is piecewise C3, onto and uniformly expanding in the sense
that infω inf
ω,ε |T̂ ′

ω,ε | > 1
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(2) for each ω ∈ � and j = 0, 1, 2 the following partial derivatives exist and satisfy the
commutation relation

∂εg
( j)
ω,ε = (∂εgω,ε)

( j).

(3)
sup
ω

sup
ε∈V

sup
x∈


∣∣∣∣∣g
′′
ω,ε(x)

g′
ω,ε(x)

∣∣∣∣∣ < ∞;

(4) for i = 2, 3 ∑
ω

sup
ε∈V

sup
x∈


|g(i)
ω,ε(x)| < ∞;

(5) for i = 1, 2 ∑
ω

sup
ε∈V

sup
x∈


|∂εg
i
ω,ε(x)| < ∞.

Remark 2.11 Property (1) guarantees that there exists a spectral gap and a unique invariant
density for each ε in V , (2) is self explanatory, (3) is necessary for Lemma 3.3, and (4) and
(5) are necessary for the convergence of formulas (2.6) and (2.9).

Lemma 2.12 ( [4], Properties of the transfer operator of the induced map) Let L̂ε denote the
transfer operator of the map T̂ε; i.e., for 
 ∈ L1(
)

L̂ε
(x) :=
∑
ω∈�


 ◦ gω,ε(x)g
′
ω,ε(x)

for a.e. x ∈ 
.
Then, L̂ε has a spectral gap when acting on Ck and Wk,1, k = 1, 2, and has a unique

(up to multiplication) fixed point, denoted by ĥε , i.e., T̂ε admits a unique finite absolutely
continuous invariant measure με = ĥεdm.

2.3 Relating the Properties of the InducedMap and of the Original Map

Definition 2.13 We define the pull-back operator F as follow: For 
 ∈ L1, let

Fε(
)(x) := 1

(x) + (1 − 1
)
∑
ω∈�


 ◦ gω,ε(x) · g′
ω,ε(x). (2.6)

Remark 2.14 Note that Fε is a linear operator. In fact, for x ∈ [0, 1] \ 
, the formula of Fε

can be re-written using the Perron-Frobenius operator of Tε :

Fε(
) := 1

 + (1 − 1
)
∑
k≥1

Lk
ε(
 · 1{Rε>k}), (2.7)

where Lε is the Perron-Frobenius operator of Tε .

Lemma 2.15 ([4]) The invariant densities of the original system and the induced one are
related (modulo normalization in the finite measure case) by

hε = Fε(ĥε). (2.8)
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Definition 2.16 We define the derivative of the pull-back operator, which represents
∂εFε
|ε=0

Q
(x) = (1 − 1
)
∑
ω


′ ◦ gω(x) · aω(x)g′
ω(x) + 
 ◦ gω(x) · bω(x), (2.9)

where aω = ∂εgω,ε |ε=0 and bω = ∂εg′
ω,ε |ε=0.

Lemma 2.17 ([4], Linear response formula) The invariant density ĥε of the induced map T̂ε

is differentiable as a C0 element and its linear response formula is given by

ĥ∗ := (I − L̂)−1 L̂[A0ĥ
′ + B0ĥ], (2.10)

where ĥ′ is the spatial derivative of ĥ and

A0 = −
(

∂ε T̂ε

T̂ ′
ε

) ∣∣∣
ε=0

, B0 =
(

∂ε T̂ε · T̂ ′′
ε

T̂ ′2
ε

− ∂ε T̂ ′
ε

T̂ ′
ε

) ∣∣∣
ε=0

.

Moreover, for the original map, ε �→ hε is differentiable as an element of B; in particular, if
the conditions hold for some γ < 1

lim
ε→0

∥∥∥∥hε − h

ε
− h∗

∥∥∥∥
1

= 0,

and h∗ is given by 3

h∗ = F0ĥ
∗ + Qĥ. (2.11)

2.4 Main Result and Explicit Strategy

We focus on the case γ < 1. The goal of this work is to provide a numerical scheme that
can rigorously approximate h∗, up to a pre-specified error τ > 0, in the L1-norm. To obtain
such a result we follow the following steps:

(1) first provide a sequence of finite rank operators L̂η that can be used to approximate the
linear response for the induced map ĥ∗ in C1(
). Since the formula of ĥ∗ involves ĥ
and ĥ′, we will design L̂n so that its invariant density, ĥn , well approximates ĥ in the
C1-norm,

(2) we pull-back to the original map by defining Fapp
0 and Qapp

0 by truncating (2.6) and (2.9);
i.e., for 
 ∈ L1,

Fapp
0 (
) := 1

 + (1 − 1
)

N∗∑
ω=1


 ◦ gω,0g
′
ω,0

and

Qapp
 = (1 − 1
)

N∗∑
ω=1


′ ◦ gω · aωg
′
ω + 
 ◦ gω · bω

3 Note that in the finite measure case, h∗ is the derivative of the non-normalized density hε . The advantage
in working with hε is reflected in keeping the operator Fε linear and to accommodate the infinite measure
preserving case. In the finitemeasure case, once the derivative of hε is obtained, the derivative of the normalized
density can be easily computed. Indeed, hε = h + εh∗ + o(ε). Consequently,

∫
hε = ∫

h + ε
∫
h∗ + o(ε).

Hence, ∂ε(
hε∫
hε

)|ε=0 = h∗ − h
∫
h∗.
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(3) finally, find N∗ large enough and set

h∗
η := Fapp

0 ĥ∗
u + Qappĥn (2.12)

so that

‖h∗
η − h∗‖1 ≤ τ.

This strategy allows us to prove the following theorem.

Theorem 2.18 For any τ > 0, there exists:

(1) a sequence of finite rank operators L̂η : C1(
) → C1(
),
(2) a sequence of finite rank operators Fapp

0 ,
(3) a sequence of finite rank operators Qapp,
(4) η small enough,
(5) N∗ > 0 large enough,

such that

‖h∗
η − h∗‖1 ≤ τ.

2.5 TheValidated Numerics Toolbox

While the strategy for the approximation of the linear response may seem quite simple, to
make it rigorous, i.e., with a certified control on the error terms so that the results have the
strength of proofs, many different quantities have to be estimated explicitly by means of a
priori and a posteriori estimates.

The main toolbox we use for these validated estimates consists of

(1) Interval Arithmetics and rigorous contractors as the Interval Newton Method and the
Shooting Method [47]

(2) discretization of the transfer operator, using the Ulam and Chebyshev basis [22, 26, 48]
(3) a priori estimate on the tail of a series and rigorous bounds for a finite number of terms.

We will introduce these methods and some of their implementation details during the proof
of our result, showing the difference with the cited references when needed.

3 Approximating the Invariant Density of the InducedMap

To approximate the invariant density for the inducedmap two approximation steps are needed.
First we need to approximate the induced map, which has countable branches with a map
with a finite number of branches. Then, we will discretize the transfer operator of this map
by using a Chebyshev approximation scheme.

3.1 The Involved Function Spaces

During the course of the paper, in addition to the space B, we will use the function spaces
Ck(I ) and Wk,p(I ), defined as follow.
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Definition 3.1 Given an interval I we define the space Ck(I ) as the space of the k-
continuously differentiable functions, endowed with the norm

‖ f ‖Ck =
k∑

i=0

‖ f (i)‖∞.

Definition 3.2 Given an interval I we define the space Wk,p(I ) as the space of functions
f ∈ L p with k weak derivatives f (i) such that

‖ f ‖Wk,p =
k∑

i=0

‖ f (i)‖L p < +∞.

3.2 From Countable Branches to Finite Branches

Let δk > 0 with δk = ∣∣∪∞
n=k[ω]∣∣. To simplify notation we assume without loss of generality

that 1
2 ∈ ∪∞

n=k[ω]. Let

T̂δk (x) =
{
T̂ (x) , if x ∈ [δk, 1],
1
2 δ

−1
k (x − 1

2 ) + 1
2 , if x ∈ [0.5, δk).

Then the transfer operator L̂δk , associated with Tδk is acting on 
 ∈ L1(
) as:

L̂δk
(x) :=
∑
ω∈�
n<k


 ◦ gω,ε(x)g
′
ω,ε(x) + 


(
δk(2x − 1) + 1

2

)
2δk

for a.e. x ∈ 
.

Lemma 3.3 Let 
 ∈ C1, then

‖(L̂ − L̂δk )
‖C1 ≤ (D + D0D + 2)‖
‖C1δk,

where D0 =
∥∥∥ g′′

ω

g′
ω

∥∥∥∞ and D ≥ 2 supω
|g′

ω(x)|
|g′

ω(y)| for all
4 x, y in [0.5, 1].

Proof First notice that

∣∣∣(L̂ − L̂δk )


∣∣∣ =
∣∣∣∣∣∣∣∣
∑
ω∈�

n≥k


 ◦ gω(x)g′
ω(x) − 
(δk(2x − 1) + 1

2
)2δk

∣∣∣∣∣∣∣∣
≤
∑
ω∈�

n≥k

|
 ◦ gω(x)| · |g′
ω(x)| + |
(δk(2x − 1) + 1

2
)|2δk

(3.1)

4 The existence of a uniform constant D > 0 is implied by condition (3).
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and ∣∣∣∣((L̂ − L̂δk )

)′∣∣∣∣

=

∣∣∣∣∣∣∣∣
∑
ω∈�
n≥k

(

′ ◦ gω(x)(g′

ω(x))2 + 
 ◦ gω(x)g′′
ω(x)

) −|
′(δk(2x − 1) + 1

2
)4δ2k |

∣∣∣∣
≤
∑
ω∈�

n≥k

|
′ ◦ gω(x)| · (g′
ω(x))2 + sup

ω

∥∥∥g′′
ω

g′
ω

∥∥∥∞
∑
ω∈�

n≥k

|
 ◦ gω(x)| · |g′
ω(x)|

+ |
′(δk(2x − 1) + 1

2
)|4δ2k .

(3.2)

Now notice that by the Mean Value Theorem, ∃ ξω ∈ ( 12 , 1) such that

|gω(1) − gω

(
1

2

)
| = |g′

ω(ξω)|/2.

Therefore,

|g′
ω(x)| ≤ 2|gω(1) − gω

(
1

2

)
| · sup

ω

|g′
ω(x)|

|g′
ω(ξω)| := D · |gω(1) − gω

(
1

2

)
|. (3.3)

Thus, using (3.3) in (3.1) and (3.2), we obtain∣∣∣(L̂ − L̂δk )


∣∣∣+ ∣∣∣∣((L̂ − L̂δk )

)′∣∣∣∣ ≤ ‖
‖C0D

∑
ω∈�
n≥k

|gω(1) − gω(
1

2
)| + ‖
‖C02δk

+
(

‖
′‖C0D + ‖
‖C0D sup
ω

∥∥∥g′′
ω

g′
ω

∥∥∥∞

)∑
ω∈�

n≥k

·|gω(1) − gω(
1

2
)| + ‖
′‖C04δ2k

= (D + D0D + 2)‖
‖C0δk + ‖
′‖C04δ2k ≤ (D + D0D + 2)‖
‖C1δk .

(3.4)

��
The next lemma shows that using the above information, the densities ĥ and ĥδk can be made
arbitrarily close in C1.

Lemma 3.4 Given two operators, L1 and L2, with fixed points h1 and h2 such that

• satisfy a shared Lasota–Yorke inequality, i.e.,∥∥Ln
i f
∥∥
s ≤ Aλn ‖ f ‖s + B ‖ f ‖w

for i ∈ {1, 2}
• preserve the integral, i.e.,

∫
Li f dx = ∫ f dx for i = 1, 2,

and suppose moreover there is a C∗ such that
∥∥Ln

i f
∥∥
s ≤ C∗ ‖ f ‖s , and for any N ≥ 1 we

have

‖h1 − h2‖s ≤ ‖LN
1 (h1 − h2)‖s + NC∗‖(L1 − L2)h2‖s .
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Furthermore if
∥∥LN

1 |U0

∥∥
s ≤ CN < 1 then we can have

‖h1 − h2‖s ≤ NC∗‖(L1 − L2)h2‖s
1 − CN

.

Proof The value of C∗ is given by Aλ + B, and the distance between the two fixed points is
shown as follows,

‖h1 − h2‖s ≤ ‖LN
1 h1 − LN

2 h2‖s
≤ ‖LN

1 (h1 − h2)‖s + ‖(LN
1 − LN

2 )h2‖s .
Note that

(LN
1 − LN

2 )h2 =
N∑

k=1

LN−k
1 (L1 − L2)L

k−1
2 h2

=
N∑

k=1

LN−k
1 (L1 − L2)h2.

Consequently,

‖(LN
1 − LN

2 )h2‖s ≤
N∑

k=1

C∗‖(L1 − L2)h2‖s

≤ NC∗‖(L1 − L2)h2‖s .
Since L1 and L2 preserve the integral we have that h1 − h2 ∈ U 0 and therefore we can

bound ‖LN
1 (h1 − h2)‖s by CN‖h1 − h2‖s , rearranging gives us the last result. ��

Remark 3.5 We remark that in order to useLemma3.4, ourChebyshev approximation scheme
is adapted to preserve the integral, as explained in Remark 3.22.

Remark 3.6 The operators L̂ and L̂δk admit a uniform Lasota–Yorke inequality,∥∥∥L̂n f
∥∥∥
C1

≤ Aλn ‖ f ‖C1 + B ‖ f ‖C0

as shown in Sect. 8.2.1, where a value for C∗ is found. Bounds on
∥∥Lδk |U0

∥∥
C1 can be found

by techniques described in Sect. 3.3.4. The C1 norms of ĥδk and ĥ can be estimated using
the Lasota–Yorke inequalities. We can then use Lemma 3.3 to make the error in ‖ĥδk − ĥ‖C1

as small as we like.

Next we define a finite rank operator to obtain ĥn so that ‖ĥn − ĥδk‖C1 can be made as small
as required.

3.3 Approximating the Invariant Density for T̂ık

To approximate the invariant density, we will discretize the operator L̂δk using the basis of
the Chebyshev polynomials of the first kind; this approach is similar to [48], but instead of
using a priori estimates on the spectral gap, we use a posteriori estimates on the mixing rate,
in the spirit of [22, 26]. The Chebyshev basis is a basis for the space of polynomials with
a main advantage: given a continuous function f on [−1, 1] the interpolating polynomial
on the Chebyshev points are “near-best” approximants with respect to ‖.‖∞ [46, Theorem
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16.1]; moreover if the function f is regular enough the coefficients of the interpolant decay
“fast” and are easily computed by means of the Fast Fourier Transform.

Before going forward, some observations are in order, since Chebyshev polynomials do
not solve all the problems involved with approximation: to apply this approximation scheme
we need to prove A priori that our stationary density is regular enough and keep track of all
the errors involved in the computation of the coefficients. Moreover, evaluating a Chebyshev
polynomial of high degree rigorously is a delicate matter [37].

3.3.1 Chebyshev Interpolation and Projection

Given an f ∈ W 1,1 from [−1, 1] → C, we can define a function F(θ) on [0, 2π] by
F(θ) = f (cos(θ)).

By the Sobolev embedding theorem, we know that one of the representatives of the equiva-
lence class f is absolutely continuous: in the following we assume this is the case.

Then, if we denote by b0 = a0/2, bN−1 = aN−1/2 and bi = ai for all i = 1, . . . , N − 2:

p(x) =
N−1∑
k=0

bkTk(x),

where the ak are the ones computed by the DFT is the interpolating polynomial of f on the
grid given by the xi .

Definition 3.7 We define the Fourier grid of [0, 2π ] of size 2N as θi = (2π i)/(2N ) for
i = 0, . . . , 2N − 1.

The Discrete Fourier Transform (FFT) on a grid of size 2N allows us to compute the
coefficients ak of the trigonometric polynomial interpolating F on an equispaced grid θi =
(2π i)/(2N ), for i in 0, . . . , 2N − 1, i.e., for all i :

F(θi ) =
N∑

j=−N+1

a j e
−iπ jθi .

Remark that computing the coefficients ak efficiently can be achieved by using the family
of algorithms known as Fast Fourier Transforms, of which the most common is the Cooley-
Tukey algorithm, which was first used by Gauss [30].

Definition 3.8 We define the Chebyshev grid of order N as xi = cos(θi ) for i in 0, . . . , N .

Denote by πx : C → R be the projection on the x axis; then, πx (ei ·θi ) = xi . Observe that
F(θi ) = F(θ2N−i ) = f (xi ).

Definition 3.9 We define the Chebyshev polynomials by the relation

Tn(cos(θ)) = cos(nθ).

Definition 3.10 Let f ∈ Wk,1, k > 1, we define the Chebyshev (interpolating) projection

πn f =
n∑

k=0

bkTk(x).
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where b0 = a0/2, bN−1 = aN−1/2 and bi = ai for all i = 1, . . . , N − 2 and the ai are the
coefficients computed by the DFT of F .

Remark 3.11 If, instead of the FFT we had taken the Fourier transform of F , the Fourier
coefficients âk would define coefficients b̂k , the Chebyshev orthogonal expansion

f (x) =
+∞∑
k=0

b̂kTk(x),

and the Chebyshev projection

π̂n f =
n∑

k=0

b̂kTk(x).

The coefficients ak and âk are related by the aliasing relation:

ak =
∑
p∈Z

âk+p·2n,

a-priori knowledge of the regularity of f allows to estimate the aliasing error above.

This foundational Theorem from [46] estimates the decay rate of the Chebyshev coeffi-
cients.

Theorem 3.12 For an integer ν ≥ 0, let f and its derivatives through f (ν−1) be absolutely
continuous on [−1, 1] and suppose the νth derivative f (ν) is of bounded variation V . Then
for k ≥ ν + 1, the Chebyshev coefficients of f satisfy

|b̂k | ≤ 2V

πk(k − 1) . . . (k − ν)
≤ 2V

π(k − ν)ν+1 .

The decay rate of Chebyshev coefficients allows us to estimate the projection error in C0

and C1 norm.

Theorem 3.13 If f satisfies the conditions of Theorem 3.12, with V again the total variation
of f (ν) for some ν ≥ 1, then for any n ≥ ν, its Chebyshev projection satisfies

‖ f − πn f ‖∞ ≤ 2V

πνn(n − 1) . . . (n + 1 − ν)

The following theorem is a consequence of combining theorem 3.12, with the proof of
Theorem 2.3 from [51],

Theorem 3.14 If f , f ′, . . . , f (ν−1) are absolutely continuous on [−1, 1] and if
∥∥ f (ν)

∥∥
1 =

V < ∞ for some ν ≥ 0, then for each n ≥ ν + 1, we have that for ν > 2

∥∥ f ′ − (πn f )
′∥∥∞ ≤ 4(n + 1)V

n(ν − 2)π(n − 2)(n − 3) . . . (n + 1 − ν)
.

Proof From the proof of Theorem 2.3 from [51] we have

∥∥ f ′ − (πn f )
′∥∥∞ ≤ 2

∞∑
k=n+1

|ak |k2
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and Theorem 3.12 then gives

∥∥ f ′ − (πn f )
′∥∥∞ ≤

∞∑
k=n+1

4Vk2

πk(k − 1) . . . (k − ν)

≤ 4(n + 1)V

n(ν − 2)π(n − 2)(n − 3) . . . (n + 1 − ν)
.

��

We can use these theorems to bound the error of Chebyshev projections in the C1 norm.

3.3.2 Numerical Remarks: FFT and Chebyshev

It is important to have an explicit estimate of the error on the coefficients introduced by the
FFT. The main issue here is that, computing Chebyshev points and evaluating the function f
are not exact operation. To compute rigorous inclusions of the true mathematical value, we
use Interval Arithmetics [47].

This means that we need to compute the FFT of a vector of intervals, not of floating point
numbers. The following is the consequence of a classical result from [31] that allows us
to find a vector of intervals that encloses the Fast Fourier Transform of any element of the
vector of the values. This allows us to use optimized implementations of the FFT algorithm
as FFTW [20].

Remark 3.15 We remark that, to use the following estimate as it is, we need to use Chebyshev
basis such that the Chebyshev projection is computed by using a FFT with size a power of
2, i.e., the size of the Chebyshev basis is 2l−1 + 1 for l > 1, i.e., the Chebyshev polynomials
have degree smaller than 2l−1.

Remark 3.16 The estimate in [31] cited below can be generalized to other sizes; we stress that
the precision of the Cooley–Tukey algorithm stems from the same origin as its computational
effectiveness: its recursive structure that makes the operation count grow as O(N log(N )).

Lemma 3.17 Let f̃ be a vector of intervals of dimension N = 2l , fm the vector of their
midpoints, fr the vector of their radiuses. Let â be the computed FFT of fm by the Cooley-
Tukey FFT algorithm. Then

∥∥â − ā
∥∥
2 ≤ l√

N
(

η

1 − η
‖ fm‖2 + ‖ fr‖2).

where ā is the exact FFT for any f ∈ f̃ , η = μ + γ4(
√
2 + μ) with μ the absolute error in

the computation of the twiddle factors and γ4 = 4u/(1 − 4u) where u is the unit roundoff.

Remark 3.18 It is important to stress that Floating Point numbers are not a field in the
mathematical sense: due to rounding, floating point operations are neither associative nor
commutative. This also implies that while, when acting on complex numbers, the Cooley-
Tukey algorithm is a linear operator, on floating point numbers this is not true anymore. If v̂

is the computed FFT of a vector v we must assume that in general ̂(v + w) is different from
v̂ + ŵ; the estimate above is used to control the error arising from using the Cooley-Tukey
algorithm in floating point arithmetic.
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3.3.3 Bounding the Error on the Invariant Density

Let πn be the Chebyshev projection and let

L̂n = πn L̂δkπn

be our finite rank approximation of L̂δk .

Lemma 3.19 If 1/T̂δk is of class Cν then L̂δk admits Lasota–Yorke like inequalities of the
form ∥∥∥(L̂n

δk
f )(k)

∥∥∥
1

≤ (λk)n
∥∥∥ f (k)

∥∥∥
1
+ Ãk ‖ f ‖Wk−1,1 ,

for some ν ∈ N for k = 1, . . . , ν. This implies that if hδk is a fixed point of L̂δk

‖hδk‖Wk,1 ≤ Ak

1 − λk
‖hδk‖Wk−1,1

Remark 3.20 The Lasota–Yorke inequalities give us an upper bound on theWk,1 norm of the
fixed point. This, together with Theorems 3.13 and 3.14 permit us to control the discretization
error. To estimate our error, we need to compute the constants of this Lasota–Yorke inequality
explicitly, we refer to Sect. 7.2.3 for the technique we used.

Remark 3.21 We can use theorems 3.13 and 3.14, together with Lemma 3.19 to get a bound
on ‖L̂δk − L̂n‖C1 and the techniques from Sect. 3.3.4 to with Lemma 3.4 using operators L̂δk

and L̂n in order to bound
∥∥∥ĥδk − ĥn

∥∥∥
C1

explicitly. This approach is now quite established, a

full treatment can be found in [22, 26].

Remark 3.22 The discretized operator obtained by the Chebyshev discretization does not
preserve the value of the integral. To solve this issue, as in [26] we correct the behaviour of
the discretized operator by defining a new operator

Q̂η f = L̂η f + 1 · (

∫
f dx −

∫
L̂η f dx)

which is guaranteed to preserve the space of average 0 measure and has eigenvalue 1, since
the row vector that contains the integrals of the basis elements is preserved by multiplication
on the left.

3.3.4 Numerical Remarks: Convergence Rates

The problem of bounding the error in C1 is now reduced to estimate cN such that∥∥∥L̂ N
n |U0

∥∥∥
C1

≤ cN . Since the operator Ln is of finite rank, we can use numerical methods to

compute these quantities in a rigorous way.
Given a basis {ei }i ofU 0 normalized with respect to the C1 norm, a generic function v in

U 0 is written as v =∑N
i=1 bi ei . We want to find a constants Ck such that

‖L̂k
nv‖C1 ≤ Ck‖v‖C1 .

If a ck exists such that for all basis elements ei we have

‖L̂k
nei‖C1 ≤ ck .
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then

‖L̂k
nv‖C1 ≤ ck

N∑
i=1

|bi | ≤ ck‖b‖�1

where the �1 norm is the linear algebra norm on the coefficients; we will exhibit a constant
D such that ‖.‖�1 ≤ D‖.‖C1 ; then Ck ≤ Dck .

A basis of U 0 in the Chebyshev basis is given by

ei = gi
‖gi‖C1

, where gi (x) = Ti (x) −
∫ 1

−1
Ti (x)dx .

We can link the Chebyshev coefficients ai and bi by

a0 = −
N∑
i=1

bi

∫ 1

−1
Ti (x)dx

and ai = bi for i > 0. We can use Theorem 3.12 to say

|ak | ≤ ‖v‖C1

k

and therefore

‖b‖�1 =
N∑

k=1

|bi | ≤
N∑

k=1

‖v‖C1

k
≤ log(N + 1) ‖v‖C1

so we have D = log(N + 1) and∥∥∥L̂k
nv

∥∥∥
C1

≤ ck log(N + 1) ‖v‖C1 .

Computationally if we take N functions

êi = gi
‖gi‖−

C1

,

where ‖gi‖−
C1 is a lower bound on the C1 norm of gi and if we calculate each

∥∥∥L̂k
nei
∥∥∥
C1

then take the maximum value and call it ĉk , then ĉk log(N + 1) is an upper bound on the C1

contraction of
∥∥∥L̂k

n |U0

∥∥∥
C1
.

It is important to explain how we compute an upper bound for the C1 norm: we use a
classical optimization algorithm in IntervalArithmetics [47] that allows us to give a certified
upper bound, implemented in the Julia package IntervalOptimisation.jl. The main issue here
is that the Clenshaw algorithm is prone to overestimation when evaluated on intervals [37];
to solve this we extended the algorithms in [37] to get tighter bound for the maximum of a
Chebyshev polynomial and its derivative.
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4 Approximating the Linear Response for the Induced System

We now provide an approximation of the linear response of the induced map, ĥ∗, in the
L1-norm, through the use of the Ulam approximation; we refer to [22, 26] for an in-depth
treatment of the Ulam discretization. We recall that the functions A0 and B = 0 are defined
as

A0 = −
(

∂ε T̂ε

T̂ ′
ε

) ∣∣∣
ε=0

, B0 =
(

∂ε T̂ε · T̂ ′′
ε

T̂ ′2
ε

− ∂ε T̂ ′
ε

T̂ ′
ε

) ∣∣∣
ε=0

.

To compute the linear response we need to approximate the quantity (2.10)

ĥ∗ = (I − L̂)−1 L̂[A0ĥ
′ + B0ĥ],

by using the Neumann inequality and the spectral gap of L̂ we pretend to approximate this
by a finite sum

K∑
i=0

L̂i L̂[A0ĥ
′ + B0ĥ],

but this involves some delicate work, the first step being approximating L̂ by L̂δk ; while
L̂[A0ĥ′ + B0ĥ] is bounded, we have that L̂δk [A0ĥ′ + B0ĥ] is unbounded, therefore is not
well representable in the Chebyshev basis. Therefore, we need to resort to a different basis
for the discretization of Lδk , the Ulam basis.

Definition 4.1 The Ulam projection, is a projection �u : L1([0.5, 1]) → L1([0.5, 1]) over
a partition of [0.5, 1], denoted by P ,

�u f (x) = 1

|A|
∫
A
f (x)dx

where x ∈ A ∈ P . The Ulam discretisation of the transfer operator Lδk is

L̂u := �u L̂δk�u .

4.1 Error in Approximating the Linear Response

Set our approximation of (2.10) to be

ĥ∗
u :=

l∗∑
n=0

L̂n
u L̂δk [A0ĥ

′
n + B0ĥn]. (4.1)

where L̂u is the Ulam approximation of L̂δk .

Lemma 4.2 We have

‖ĥ∗
u − ĥ∗‖1 ≤

l∗∑
n=0

n∑
i=0

∥∥∥(L̂u − L̂δk )L̂
n−i
u Wu

∥∥∥
1
+

l∗∑
n=0

n∑
i=0

∥∥∥(L̂δk − L̂)L̂n−i
u Wu

∥∥∥
1

+ l∗ ‖(Wu − W )‖1 +
∞∑

n=l∗+1

∥∥∥L̂nW
∥∥∥
1

(4.2)
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where W = L̂[A0ĥ′ + B0ĥ] and
Wu(x) =

∑
ω≤k

1

η

∫
gω(Ii )

A0(z) · ĥ′
n(ζ ) + B0(z)ĥn(ζ )dz

+ 1

η

∫
δk (2Ii−1)+1/2

[A0ĥ
′
n + B0ĥn](z)dz

for x ∈ Ii and ζ ∈ gω(Ii ).

Proof First we must recall from (4.1) that

ĥ∗
u =

l∗∑
n=0

L̂n
u�u Lδk [A0ĥ

′
n + B0ĥn].

Take x ∈ Ii , then we have

�u Lδk [A0ĥ
′
n + B0ĥn](x)

= 1

η

∫
Ii

∑
ω≤k

[A0ĥ
′
n + B0ĥn] ◦ gω(y)g′

ω(y) + [A0ĥ
′
n + B0ĥn] ◦ (δk(2y − 1) + 1/2)δkdy

= 1

η

∑
ω≤k

∫
gω(Ii )

[A0ĥ
′
n + B0ĥn](z)dz + 1

η

∫
δk (2Ii−1)+1/2

[A0ĥ
′
n + B0ĥn](z)dz.

The estimate follows by direct calculation. Indeed, by (2.10) and the definition of ĥ∗
u we have

∥∥∥ĥ∗ − ĥ∗
u

∥∥∥
1

=
∥∥∥∥∥∥

∞∑
n=0

L̂nW −
l∗∑
n=0

L̂n
uWu

∥∥∥∥∥∥
1

≤
∥∥∥∥∥∥

l∗∑
n=0

L̂nW −
l∗∑
n=0

L̂n
uWu

∥∥∥∥∥∥
1

+
∞∑

n=l∗+1

∥∥∥L̂nW
∥∥∥
1

which, by using the triangle inequality and the second resolvent identity, is bounded above
by ∥∥∥∥∥∥

l∗∑
n=0

L̂nWu −
l∗∑
n=0

L̂n
uWu

∥∥∥∥∥∥
1

+
∥∥∥∥∥∥

l∗∑
n=0

(L̂nW − L̂nWu)

∥∥∥∥∥∥
1

+
∞∑

n=l∗+1

∥∥∥L̂nW
∥∥∥
1

≤
l∗∑
n=0

n∑
i=0

∥∥∥L̂i (L̂u − L̂)L̂n−i
u Wu

∥∥∥
1
+

l∗∑
n=0

∥∥∥L̂n(Wu − W )

∥∥∥
1
+

∞∑
n=l∗+1

∥∥∥L̂nW
∥∥∥
1

≤
l∗∑
n=0

n∑
i=0

∥∥∥(L̂u − L̂δk )L̂
n−i
u Wu

∥∥∥
1
+

l∗∑
n=0

n∑
i=0

∥∥∥(L̂δk − L̂)L̂n−i
u Wu

∥∥∥
1

+ l∗ ‖(Wu − W )‖1 +
∞∑

n=l∗+1

∥∥∥L̂nW
∥∥∥
C1

��
Remark 4.3 The estimates in Lemma 4.2 can all be made as small as desired. Indeed, notice
that L̂[A0ĥ′ + B0ĥ] is a zero average C1 function; therefore
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• the last summand
∑∞

n=l∗+1 ‖L̂n+1W‖C1 can be made, for sufficiently large l∗, small

since L̂ admits a spectral gap when acting on C1. Once this term is estimated, l∗ is fixed
once and for all;

• the summand
∑l∗

n=0
∑n

i=1 ‖(L̂− L̂δk )L̂
n−i
u Wu‖1 can bemade small by choosing δk small

enough;
• the summand

∑l∗
n=0

∑n
i=1 ‖(L̂δk − L̂u)L̂n−i

u Wu‖1 can be made small by choosing η, the
size of the Ulam discretization, small enough;

• the term l∗ ‖(Wu − W )‖1 can be made small by reducing δk .

5 Normalising the Density and the Linear Response

Ultimately the goal is to approximate the dynamics of the system, so we would like the
invariant measure to be a probability measure. This is not always possible for maps with
indeterminate fixed points, however it was shown in [11] that a fixed point of the transfer
operator of an LSVmap is bounded above byCx−α , for some constantC , giving a maximum
integral of C

1−α
, so we can make our calculated density a probability density by normalising

with respect to its integral. Our approximation of the density, hη, when normalised will then
have an error of

∥∥∥∥ hη∫
hηdm

− h∫
hdm

∥∥∥∥
1

=
∥∥∥∥ hη∫

hηdm
− h∫

hηdm
+ h

∫
hdm − ∫ hηdm∫
hdm

∫
hηdm

∥∥∥∥
1

≤
∥∥h − hη

∥∥
1∫

hηdm
+ ‖h‖1∫

hdm

∥∥h − hη

∥∥
1∫

hηdm
≤ 2

∥∥h − hη

∥∥
1∫

hηdm

and if we ensure that the integral is preserved throughout the approximation then the error is
‖h−hη‖1∫

hηdm
.

Since the Chebyshev approximation does not preserve the integral we use the first estimate
to bound

∥∥∥∥ hη∫
hηdm

− h∫
hdm

∥∥∥∥
1

where we calculate the integral of hη by

∫ 1

0
Fappĥηdx =

∫ 1

0.5
ĥηdx +

N∗∑
|ω|=1

Hη ◦ gω(1) − Hη ◦ gω(0.5)

where Hη(x) = ∫ x0.5 hηdx .
The linear response for the normalised invariant density is then ρ∗ such that

lim
ε→0

∥∥∥∥∥∥
h∫
hdm

− hε∫
hεdm

ε
− ρ∗

∥∥∥∥∥∥
1

= 0
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we get from this

∥∥∥∥∥∥
h∫
hdm

− hε∫
hεdm

ε
− ρ∗

∥∥∥∥∥∥
1

=
∥∥∥∥∥∥

h∫
hdm

− hε∫
h+εh∗+o(ε2)dm

ε
− ρ∗

∥∥∥∥∥∥
1

=
∥∥∥∥∥∥

h∫
hdm

− hε∫
hdm

ε
− hε

∫ [h∗ + o(ε)]dm∫
hdm(

∫ [h + εh∗ + o(ε2)]dm)
− ρ∗

∥∥∥∥∥∥
1

which tells us that

ρ∗ = h∗∫
hdm

− h
∫
h∗dm

(
∫
hdm)2

.

For brevity later let

A = h∗∫
hdm

− h∗
η∫

hηdm
B = −h

∫
h∗dm

(
∫
hdm)2

+ hη

∫
h∗

ηdm

(
∫
hηdm)2

.

The error on the normalised linear response is calculated as follows,

∥∥∥∥∥ h∗∫
hdm

− h
∫
h∗dm

(
∫
hdm)2

− h∗
η∫

hηdm
+ hη

∫
h∗

ηdm

(
∫
hηdm)2

∥∥∥∥∥
1

focusing on the first part for now,

=
∥∥∥∥ h∗∫

hηdm
− h∗

η∫
hηdm

+ h∗ ∫ (hη − h)dm∫
hdm

∫
hηdm

+ B

∥∥∥∥
1

=
∥∥∥∥h

∗ − h∗
η∫

hηdm
+ h∗ ∫ (hη − h)dm∫

hdm
∫
hηdm

+ B

∥∥∥∥
1

and now on the second part

=
∥∥∥∥∥A + hη

∫
h∗

ηdm

(
∫
hηdm)2

− h
∫
h∗dm

(
∫
hdm)2

∥∥∥∥∥
1

≤

∥∥∥∥∥∥∥A + hη

∫
h∗

ηdm

(
∫
hηdm)2

−
(hη + (h − hη))(

∫
h∗

ηdm −
∥∥∥h∗ − h∗

η

∥∥∥
1
)

(
∫
hηdm + ∥∥h − hη

∥∥
1)

2

∥∥∥∥∥∥∥
1

=
∥∥∥∥A −

(h − hη)(
∫
h∗

ηdm −
∥∥∥h∗ − h∗

η

∥∥∥
1
) − hn

∥∥∥h∗ − h∗
η

∥∥∥
1

(
∫
hηdm + ∥∥h − hη

∥∥
1)

2

+ hη

∫
h∗

ηdm(2
∫
hηdm

∥∥h − hη

∥∥
1 + ∥∥h − hη

∥∥2
1)

(
∫
hηdm + ∥∥h − hη

∥∥
1)

2(
∫
hη)2

∥∥∥∥
1

.
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This allows us to bound the L1 error of the normalised linear response by

∥∥∥h∗ − h∗
η

∥∥∥
1∥∥hη

∥∥
1

+
(

∥∥∥h∗
η

∥∥∥
1
+
∥∥∥h∗ − h∗

η

∥∥∥
1
)
∥∥h − hη

∥∥
1

(
∥∥hη

∥∥
1 − ∥∥h − hη

∥∥
1)
∥∥hη

∥∥
1

+
∥∥h − hη

∥∥
1 (

∥∥∥h∗
η

∥∥∥
1
−
∥∥∥h∗ − h∗

η

∥∥∥
1
)

(
∥∥hη

∥∥
1 + ∥∥h − hη

∥∥
1)

2
+

∥∥hη

∥∥
1

∥∥∥h∗ − h∗
η

∥∥∥
1

(
∥∥hη

∥∥
1 + ∥∥h − hη

∥∥
1)

2

+
2
∥∥∥h∗

η

∥∥∥
1

∥∥h − hη

∥∥
1

(
∥∥hη

∥∥
1 + ∥∥h − hη

∥∥
1)

2
+

∥∥∥h∗
η

∥∥∥
1

∥∥h − hη

∥∥2
1

(
∥∥hη

∥∥
1 + ∥∥h − hη

∥∥
1)

2
∥∥hη

∥∥
1

. (5.1)

6 Proof of Theorem 2.18

In this section we give a proof of the main result in the paper, i.e., that we can approximate
as well as we want the linear response.

Proof of Theorem 2.18 Using (2.12) we have

‖h∗ − h∗
η‖1 ≤ ‖F0ĥ∗ − Fapp

0 ĥ∗
u‖1 + ‖Qĥ − Qappĥn‖1

≤ ‖F0ĥ∗ − F0ĥ
∗
u‖1 + ‖F0ĥ∗

u − Fapp
0 ĥ∗

u‖1
+ ‖Qĥ − Qĥn‖1 + ‖Qĥn − Qappĥn‖1 := (I + I I + I I I + I V ).

(6.1)

By (2.6), we get

(I ) ≤ ‖ĥ∗ − ĥ∗
u‖1 +

∑
ω∈�

∫

c

∣∣∣(ĥ∗ ◦ gω − ĥ∗
u ◦ gω

)
g′
ω

∣∣∣ dx
≤ ‖ĥ∗ − ĥ∗

u‖1 + ‖ĥ∗ − ĥ∗
u‖C0 ·

∑
ω

‖g′
ω‖B

∫

c

x−γ dx .
(6.2)

Using (2.6) again, we have

(II) ≤
∑

|[ω]|>N∗

∫

c

∣∣∣ĥ∗
u ◦ gωg

′
ω

∣∣∣ dx ≤ ‖ĥ∗
u‖C0 ·

∑
|[ω]|>N∗

‖g′
ω‖B

∫

c

x−γ dx

≤ 1

21−γ (1 − γ )
· ‖ĥ∗

u‖C0 ·
∑

|[ω]|>N∗
‖g′

ω‖B.

(6.3)

Note that by (2.4), one can choose N∗ large enough so that (II) is sufficiently small. Using
(2.9), we have

(I I I ) ≤
∑
ω∈�

∫

c

∣∣∣(ĥ′ ◦ gω − ĥ′
n ◦ gω

)
· aωg

′
ω

∣∣∣ dx +
∑
ω∈�

∫

c

∣∣∣(ĥ ◦ gω − ĥn ◦ gω

)
· bω

∣∣∣ dx .
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Now using (2.3), (2.5), and the change of variables yω = gω(x) we get

(I I I ) ≤ sup
ω

|aω|
∑
ω∈�

∫
[ω]0

∣∣∣ĥ′(yω) − ĥ′
n(yω)

∣∣∣ dyω + ‖ĥ − ĥn‖C0 ·
∑
ω∈�

‖bω‖B
∫


c
x−γ dx

= sup
ω

|aω| · ‖ĥ′ − ĥ′
n‖1 + 1

21−γ (1 − γ )
·
∑
ω∈�

‖bω‖B · ‖ĥ − ĥn‖C0

≤ max

{
sup
ω

|aω|, 1

21−γ (1 − γ )
·
∑
ω∈�

‖bω‖B
}

· ‖ĥ − ĥn‖C1 .

(6.4)

Finally, using (2.9) again, we have

(I V ) ≤
∑

|[ω]|>N∗

∫

c

∣∣∣ĥ′
n ◦ gω · aωg

′
ω

∣∣∣ dx +
∑

|[ω]|>N∗

∫

c

∣∣∣ĥn ◦ gω · bω

∣∣∣ dx .
Using (2.3) and (2.4) in the first integral, and using (2.5) in the second integral, we choose
N∗ large enough and get

(I V ) ≤ 1

21−γ (1 − γ )

⎡
⎣sup

ω
|aω| · ‖ĥ′

n‖C0 ·
∑

|[ω]|>N∗
‖g′

ω‖B + ‖ĥn‖C0 ·
∑

|[ω]|>∈N∗
‖bω‖B

⎤
⎦ .

(6.5)

Choosing l∗ in 4.1 to make
∑

n=l∗+1

∥∥∥L̂nW
∥∥∥
C1

small enough, followed by k and η to make

(6.2) and (6.4) small enough, then choosing N∗ in (6.3) and (6.5) so (I + I I + I I I + I V ) ≤ τ

completing the proof. ��

7 Application to an Example

In this section we will apply our algorithm to a classical example of maps with an indifferent
fixed point, strictly related to Pomeau–Manneville maps, the Liverani–Saussol–Vaienti map.
The behaviour of this map is determined by the exponent α; if α ∈ (0, 1) it is a non-uniformly
expanding map with an absolutely continuous invariant probability measure; if α ≥ 1 there
is an absolutely continuous invariant infinite measure.

7.1 Definition of the Map and the InducedMap

The equation of the map is

T (x) =
{
x(1 + 2αxα) if x ∈ [0, 1

2 ]
2x − 1 if x ∈ ( 12 , 1]

. (7.1)

Numerical assumption 7.1 Wefixα = 0.125 in our example. This is the value corresponding
to ε = 0 in the previous section.

We construct the inducing scheme as in Sect. 2.1. Let x ′
0 = 1, x ′

1 = 3
4 , and

x ′
n = gω

(
1

2

)
for n ≥ 2.
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13
4

1
20 x′

2x′
3

....

x1x2x3

(a) The map T

11
2

3
4

....

x′
2x′

3

(b) The induced map T̂

Fig. 2 The inducing scheme for T in (7.1)

Lettingω = 10n and gω = g1◦gn0 , then cylinder set [ω] is given by gω([0.5, 1]) = (x ′
n, x

′
n−1].

Then T̂ : 
 → 
 is a piecewise smooth and onto map with countable number of branches
and it satisfies all the assumptions of Sect. 2.1. See Fig. 2 for a pictorial representation of the
above inducing scheme.

7.1.1 Numerical Remark: The Shooting Method

To approximate rigorously the operators in this paper we need a rigorous way to approximate
long orbits given a coding, i.e., we need to be able to compute

x = gω(y) = g1 ◦ gn−1
0 (y)

i.e. we need to be able to compute x ∈ [0.5, 1] such that
T n+1(x) = y, T i (x) ∈ [0, 0.5]

for i ∈ {1, . . . , n}.
To solve this problem efficiently and obtain tight bounds on x is tricky because taking

preimages sequentially leads to propagation of errors and the computed interval ends up
being not usable.

The main idea is to substitute the equation above with the following system of equations
(this technique is called the Shooting Method, and we were introduced to it by W. Tucker)⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

T (x1) − x2 = 0 x1 ∈ [0.5, 1]
T (x2) − x3 = 0 x2 ∈ [0, 0.5]
T (x3) − x4 = 0 x3 ∈ [0, 0.5]

...

T (xn) − y = 0 xn ∈ [0, 0.5].
We will use the rigorous Newton method [47], to simultaneously enclose the points

x1, . . . , xn that satisfy the system of equations above.
This method is one of the working horses of Validated Numerics. Given a function f with

nonzero derivative on an interval I , the Interval Newton method allows us to prove, with the
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Fig. 3 The approximation map with k =200

assistance of a computer, if the function f has a 0 in I and find an interval J ⊂ I which
is representable on the computer and contains the zero of the function. This generalizes to
multivariate functions, using the formula in equation (7.2).

This way we are solving a unique system of equations instead of propagating backwards
the error through solving equations with a “fat” variable. Given a function φ : R

n → R
n and

a vector of intervals x̂ = (x̂1, . . . , x̂n) the rigorous Newton step is given by

N (x̂) = x̂ ∩ (mid(x̂) − Dφ(x̂)−1φ(mid(x̂))), (7.2)

where the intersection between interval vectors ismeant componentwise andmid is a function
that sends a vector of intervals to the vector of their midpoints [47].

In our specific case, the shooting method is numerically well behaved: denoting by
φ(x1, . . . , xn) = (T (x1) − x2, . . . , T (xn) − y)T , the Jacobian Dφ is given by a bidiag-
onal matrix, whose i − th diagonal entry is T ′(xi ) and the superdiagonal entries are constant
and equal to −1. In particular, this guarantees us that the Jacobian is invertible, since its
eigenvalues correspond to the diagonal elements and these are bounded away from 0. More-
over a bidiagonal system is solved in time O(n) by backsubstitution, with small numerical
error, and these assumptions guarantee that the interval Newton method converges.

This allows us to compute tight enclosure of gω(y), g′
ω(y), which allows us to compute

discretizations of the transfer operator.

7.2 Computing the ErrorWhen Taking a Finite Number of Branches

Since we cannot calculate values for maps with infinitely many branches on the computer we
use an approximating map as described in Sect. 3.2, this is depicted in Fig. 3 for α = 0.125.
To calculate bounds on theC1 distance between the systems thesemaps definewe use Lemma
3.3 and find D and D0 for LSV maps. Estimating these bounds efficiently is delicate since it
involves estimating the sum (and the tail) of converging series whose general term is going to

123



Rigorous Computation of Linear Response... Page 25 of 49   192 

zero slowly. The estimates in literature [4, 36] give rise to values that are impractical for our
computations; as an example, the value of the constantC8 in [36] computed according to their
proof is of the order of 10269, which makes its use in our computations unfeasible, therefore
some work is needed to give sharper bounds for the constants. Since these estimates are quite
technical and need the introduction of specific notations, we separate them in Appendix not
to hinder the flow of the sections.

In Sect. 8.2 we bound D0 ≤ 2.956 and D ≤ 19.22, so∥∥∥(L̂ − L̂δk )

∥∥∥
C1

≤ (D + D0D + 2)δk ≤ 3.609δk

can be made as small as needed by increasing k.

Choosing k = 200 gives
∥∥∥L̂ − L̂δk

∥∥∥
C1

≤ 7.743 · 10−12.

7.2.1 Bounding
∥
∥
∥ĥık − ĥ

∥
∥
∥
C1

In Sect. 8.2.1 we prove the following Lasota–Yorke inequality∥∥∥L̂n
δk
f
∥∥∥
C1

≤ 2.491 · (0.5)n ‖ f ‖C1 + 6.206 ‖ f ‖∞
.

The Lasota–Yorke inequality implies that∥∥∥L̂n
δk
f
∥∥∥
C1

≤ 7.452,

which together with Lemma 3.6, and the fact proved in Sect. 7.3.5 by using the methods from
[25] that ∥∥∥L̂4

δk
|U0

∥∥∥
C1

≤ 0.1557

allowing us to bound∥∥∥ĥ − ĥδk

∥∥∥
C1

≤ 4 · 7.452
1 − 0.1557

∥∥∥(L̂δk − L̂)ĥ
∥∥∥
C1

≤ 2.734 · 10−10
∥∥∥ĥ∥∥∥

C1
(7.3)

Observing that
∥∥∥ĥ∥∥∥

C1
≤
∥∥∥ĥδk

∥∥∥
C1

+
∥∥∥ĥ − ĥδk

∥∥∥
C1

and a bound on
∥∥∥ĥδk

∥∥∥
C1

in Sect. 8.2.1

gives us a final error of 2.113 · 10−9.

7.2.2 Computing the Discretization Error

The truncated operator L̂δk satisfies the following Lasota–Yorke like inequalities5

‖(L̂nδk ) f ′‖1 ≤ 0.5n‖ f ′‖1 + 1.785‖ f ‖1
‖(L̂nδk ) f ′′‖1 ≤0.5n‖ f ′′‖1 + 0.3076‖ f ′‖1 + 6.57‖ f ‖1
‖(L̂δk f )

′′′‖1 ≤0.53n‖ f ′′′‖1 + 0.145‖ f ′′‖1 + 1.98‖ f ′‖1 + 36.96‖ f ‖1
‖(L̂nδk f )(4)‖1 ≤ 0.54n‖ f (4)‖1 + 0.057‖ f (3)‖1 + 1.49‖ f ′′‖1 + 16.97‖ f ′‖1 + 559.4‖ f ‖1
‖(L̂nδk f )(5)‖1 ≤ 0.55n‖ f (5)‖1 + 0.0199‖ f (4)‖1 + 0.85‖ f (3)‖1

5 it is straightforward to see that these inequalities imply Lasota–Yorke inequalities onWk,1 with weak norm
Wk−1,1.
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Table 1 Calculated contraction
rates of our discretised operators k

∥∥∥L̂kn |U0

∥∥∥
C1

∥∥∥L̂ku |U0

∥∥∥
1

1 3.674 1

2 1.254 1

3 0.4237 1

4 0.1427 1

5 0.04799 1

6 0.01613 1

7 0.005421 1

8 0.001821 1

9 0.0006119 1

10 0.0002056 0.09782

11 0.0007551 0.02349

+ 17.57‖ f ′′‖1 + 794.59‖ f ′‖1 + 10086‖ f ‖1
‖(L̂nδk f )(6)‖1 ≤0.56n‖ f (6)‖1 + 0.0066‖ f (5)‖1 + 0.41‖ f (4)‖1

+ 13.33‖ f (3)‖1 + 895‖ f ′′‖1 + 24840.2‖ f ′‖1 + 684431‖ f ‖1.
Since we know

∥∥hδk

∥∥
1 = 1 for f a probability density, we can use these to get a bound

on
∥∥∥h(6)

δk

∥∥∥
1
which is calculated to be 7.953 · 105. Denoting by L̂n = πn L̂δkπn the discretized

operator on the base of Chebyshev polynomials of the first kind of degree up to n, the same
Lasota–Yorke inequalities allow us to compute∥∥∥L̂δk − L̂n

∥∥∥
C1

≤ 3.297 · 10−11.

This, together with the computed bounds on the C1 mixing rate in table 1
gives us an error of ∥∥∥ĥ − ĥn

∥∥∥
C1

≤ 3.833 · 10−9;
in figure 4 a plot of the approximated density is presented.

7.2.3 Numerical Remark: Automated Lasota–Yorke Inequalities

We detail a way to automatically calculate Lasota–Yorke type inequalities for transfer oper-
ators in Wk,1. Following [13] let

Lk f =
∑

y∈T−1(x)

f (y)

|T ′(y)|k .

From this follows

(Lk f )
′ = Lk+1 f

′ + kLk( f D), (7.4)

where D = (1/T ′(x))′ is the distortion. We use the formula above to compute symbolical
expressions for the derivatives (L1 f )(l).
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Fig. 4 The invariant density of the induced map as calculated according to Sect. 3.2

Fig. 5 The linear response of the induced map as calculated according to Sect. 4

We use Interval Arithmetic and higher order Automatic Differentiation [47](as imple-
mented in TaylorSeries.jl) to compute bounds for∥∥∥(1/T ′)(l)

∥∥∥∞ .

This allows us to bound the coefficients of the Lasota–Yorke inequalities.

7.3 Approximating the Linear Response for the InducedMap

We approximate the linear response of our induced map using (4.1) which uses the Ulam
approximation of L̂u = �u L̂δk�u , where �u is the Ulam discretisation with partition size
η = 9.537 · 10−07. We get our error from Lemma 4.2, which gives us four terms that need to
be bound, each of which is done in Appendix, Sects. 7.3.2, 7.3.3, 7.3.4 and 7.3.7 for l∗ = 99
and k = 200:

(1)
∑l∗

n=0
∑n

i=0

∥∥∥(L̂u − L̂δk )L̂
n−i
u Wu

∥∥∥
1

≤ 0.0007662

(2)
∑l∗

n=1
∑n−1

i=0

∥∥∥(L̂δk − L̂)L̂n−i
u Wu

∥∥∥
1

≤ 9.616 · 10−8
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(3) l∗ ‖Wu − W‖1 ≤ 3.055 · 10−7

(4)
∑l∗

n=0

∥∥∥L̂nW
∥∥∥
1

≤ 2 · 10−289

this gives us a total error
∥∥∥ĥ∗ − ĥ∗

u

∥∥∥
1

≤ 0.0007666

7.3.1 The Contraction Rates of L̂ık in the BV Norm

In order to bound
∥∥∥L̂n

δk
|U0

∥∥∥
BV

we use Lemma 7.13 from [6] to bound

∥∥∥(L̂n
δk

− L̂n
u) f
∥∥∥
1

≤ An ‖ f ‖BV + Bn ‖ f ‖1

from which we can use Cu,n to bound
∥∥∥L̂n

δk
|U0

∥∥∥
1

≤ A ‖ f ‖BV + (B + Cu,n) ‖ f ‖1 and the

Lasota–Yorke inequality (1) from Sect. 8.2.1, and use the small matrix method from [22].
We have ⎛

⎝
∥∥∥L̂n

δk
f
∥∥∥
BV∥∥∥L̂n

δk
f
∥∥∥
1

⎞
⎠ ≤

(
λn M
An Bn + Cu,n

)(‖ f ‖BV
‖ f ‖1

)
.

We take Cu,11 ≤ 0.02349 from Table 1, together with the calculation
∥∥∥(L̂11

δk
− L̂11

u ) f
∥∥∥
1

≤
0.002927 ‖ f ‖BV + 0.0182 ‖ f ‖1, which gives the largest eigenvalue of the small matrix
ρ = 0.09785.

7.3.2 Bounding Item (1)

We can bound
∑l∗

n=0
∑n

i=0

∥∥∥(L̂u − L̂δk )L̂
n−i
u Wu

∥∥∥
1
by Theorem 7.13 of [6], from (1) we

have ∥∥∥L̂n
δk
f
∥∥∥
BV

≤ (0.5)n ‖ f ‖BV + 2 (0.2513 + 1) ‖ f ‖1

We refer to [22] for the proof of

• ‖(�u − I ) f ‖1 ≤ ηVar( f ) ≤ η ‖ f ‖BV ,
• ‖�u‖1 ≤ 1,

•
∥∥∥L̂δk

∥∥∥
1

≤ 1.

In the theorem the value of C0 = 1, so we have all of the values we need for the theorem’s
N = 1 case. The theorem then gives

l∗∑
n=1

n−1∑
i=0

∥∥∥(L̂u − L̂δk )L̂
n−i
u Wu

∥∥∥
1

≤ η
3

2

l∗∑
n=1

n−1∑
i=0

∥∥∥L̂n−i
u Wu

∥∥∥
BV

+ η
5

2
M

l∗∑
n=1

n−1∑
i=0

∥∥∥L̂n−i
u Wu

∥∥∥
1
.

We can calculate
∥∥∥L̂n−i

u Wu

∥∥∥
1
and

∥∥∥L̂n−i
u Wu

∥∥∥
BV

explicitly by using validated numerical

methods, sinceWu explicitly represented on the computer, so we can compute an enclosure of
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L̂uWu by rigorous matrix multiplication; for a function f in the Ulam basis with coefficients
vi we have explicit functions that allow us to compute the L1, BV and L∞ norms, i.e.:

‖ f ‖L1 = η
∑

|vi |, Var( f ) =
∑

|vi+1 − vi |, ‖ f ‖∞ = max
i

|vi |.

We compute a bound

l∗∑
n=0

n∑
i=0

∥∥∥(L̂u − L̂δk )L̂
n−i
u Wu

∥∥∥
1

≤ 0.0007662.

7.3.3 Bounding Item (2)

To bound
∑l∗

n=1
∑n−1

i=0

∥∥∥(L̂δk − L̂)L̂n−i
u Wu

∥∥∥
1
we observe that as in Lemma 3.3

∥∥(L − Lδk ) f
∥∥
1 =

∥∥∥∥∥∥
∑

|ω|>N∗
f ◦ gω|g′

ω| + f (δk(2x − 1) + 1

2
)2δk

∥∥∥∥∥∥
1

≤
∑

|ω|>N∗

∥∥ f ◦ gω|g′
ω|∥∥1 +

∥∥∥∥ f (δk(2x − 1) + 1

2
)2δk

∥∥∥∥
1

≤ ‖ f ‖BV
⎛
⎝ ∑

|ω|>N∗
|g′

ω| + 2δk

⎞
⎠ ,

therefore

l∗∑
n=1

n−1∑
i=0

∥∥∥(L̂δk − L̂)L̂n−i
u Wu

∥∥∥
1

≤
∥∥∥(L̂δk − L̂)

∥∥∥
BV→L1

l∗∑
n=1

n−1∑
i=0

∥∥∥Ln−i
u Wu

∥∥∥
BV

As in the estimate for item (1) we can compute
∥∥∥L̂n−i

u Wu

∥∥∥
1
and

∥∥∥L̂n−i
u Wu

∥∥∥
BV

explicitly,

which gives us

l∗∑
n=1

n−1∑
i=0

∥∥∥(L̂δk − L̂)L̂n−i
u Wu

∥∥∥
1

≤ 9.616 · 10−8.

7.3.4 Bounding Item (3)

We bound ‖Wu − W‖1 by the following
‖(Wu − W )‖1 ≤ ∥∥(Wu − Wu∞)

∥∥
1 + ∥∥(Wu∞ − W )

∥∥
1

where

Wu∞ =
∑
ω

1

η

∫
gω(Ii )

A0(x) · ĥ′
n(ζ ) + B0(x)ĥn(ζ )dx
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for x ∈ Ii and ζ ∈ gω(Ii )6 and the sum is over all ω.

∥∥W − Wu∞
∥∥
1

=
∥∥∥∥∥L̂[A0ĥ

′ + B0ĥ](x) −
∑
ω

1

|Ii |
∫
gω(Ii )

A0(x) · ĥ′
n(ζ ) + B0(x)ĥn(ζ )dx

∥∥∥∥∥
L1

≤
∫
Ii

∑
ω

∣∣∣∣[A0 · ĥ′ + B0 · ĥ] ◦ gω(y)g′
ω(y) − 1

|Ii |
∫
gω(Ii )

A0(x) · ĥ′
n(ζ ) + B0(x)ĥn(ζ )dx

∣∣∣∣ dy
=
∑
ω

∫
gω(Ii )

∣∣∣∣∣[A0 · ĥ′ + B0 · ĥ](z) − 1

g′
ω(T̂ (z))

1

|Ii |
∫
gω(Ii )

A0(x) · ĥ′
n(ζ ) + B0(x)ĥn(ζ )dx

∣∣∣∣∣ dz
where we used the change of variables z = gω(y). The expression above is then equal to

∑
ω

∫
gω(Ii )

∣∣∣∣∣
∫
gω(Ii )

1

|gω(Ii )| [A0 · ĥ′ + B0 · ĥ](z) − T ′(z) A0(x) · ĥ′
n(ζ ) + B0(x)ĥn(ζ )

|Ii | dx

∣∣∣∣∣ dz
≤
∑
ω

∫
gω(Ii )

∫
gω(Ii )

∣∣∣∣∣ 1

|gω(Ii )| [A0 · ĥ′ + B0 · ĥ](z) − T̂ ′(z) A0(x) · ĥ′
n(ζ ) + B0(x)ĥn(ζ )

|Ii |

∣∣∣∣∣ dxdz
=
∑
ω

∑
∗∈{+,−}

∫
gω(Ii )

∣∣∣∣∣
∫
gω(Ii )

1∗
1

|gω(Ii )| [A0 · ĥ′ + B0 · ĥ](z) − T̂ ′(z) A0(x) · ĥ′
n(ζ ) + B0(x)ĥn(ζ )

|Ii | dz

∣∣∣∣∣ dx

Here 1+ is the indicator function on the set where

1

|gω(Ii )| [A0 · ĥ′ + B0 · ĥ](z) − T̂ ′(z) A0(x) · ĥ′
n(ζ ) + B0(x)ĥn(ζ )

|Ii |
is positive, and 1− is the set on which it is negative.

In the following use 1+,+ to be the indicator function for the set where the above function
is positive and

∫
gω(Ii )

1∗
1

|gω(Ii )| [A0 · ĥ′ + B0 · ĥ](z)dz − A0(x) · ĥ′
n(ζ ) + B0(x)ĥn(ζ )

is positive, 1+,− where they are positive and negative, 1−,+ where they are negative and
positive and 1−,− to be the indicator of the set on which they are both negative. Then
continuing our inequality we have that the expression above is equal to

∑
ω

∑
∗,∗∈{+,−}2

∣∣∣∣
∫
gω(Ii )

∫
gω(Ii )

1∗,∗
1

|gω(Ii )| [A0 · ĥ′ + B0 · ĥ](z)dz − A0(x) · ĥ′
n(ζ ) + B0(x)ĥn(ζ )dx

∣∣∣∣
=
∑
ω

∑
∗,∗∈{+,−}2

∣∣∣∣
∫
gω(Ii )

1∗,∗A0(z) · (ĥ′(z) − ĥ′
n(ζ ))dz

+
∫
gω(Ii )

1∗,∗B0(z) · (ĥ(z) − ĥn(ζ ))dz

∣∣∣∣
6 It should be noted that finding the integral of A0ĥ′

n and B0ĥn is not easy so in our calculations instead of a
true Ulam approximation where ζ corresponds to the value that gives the integral we simply use the midpoint;
this error is taken into account explicitly and depends on the regularity estimates we have on hη .
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by rearrangement. We then use Hölder’s inequality

≤
∑
ω

∑
∗,∗∈{+,−}2

|(|gω(Ii )|
∥∥∥ĥ′′
∥∥∥∞ +

∥∥∥ĥ − ĥη

∥∥∥
C1

)

∣∣∣∣
∫
gω(Ii )

1∗,∗A0(z)dz

∣∣∣∣
+ (|gω(Ii )|

∥∥h′∥∥∞ +
∥∥∥ĥ − ĥη

∥∥∥
C1

)

∣∣∣∣
∫
gω(Ii )

1∗,∗B0(z)dz

∣∣∣∣
≤ |Ii |(

∥∥h′′∥∥∞ ‖A0‖1
2

+
∥∥h′∥∥∞ ‖B0‖1

2
) +
∥∥∥ĥ − ĥη

∥∥∥
C1

(‖A0‖1 + ‖B0‖1)

We can calculate this using a computer to for η = 9.537 · 10−07 to get∥∥(W − Wu∞)
∥∥
1 ≤ 3.046 · 10−7.

We need now to estimate this for b, the linear branch of T̂δk :

∑
Ii

∥∥∥∥∥1Ii (x)|Ii |
∫
b−1(Ii )

A0(y)ĥ
′
n(ζ )dy + B0(y)ĥn(ζ )dy − 1Ii (x)

|Ii |
∑
ω>k

∫
gω(Ii )

A0(y)ĥ
′
n(ζ ) + B0(y)ĥn(ζ )dy

∥∥∥∥∥
1

≤
∑
Ii

∫
b−1(Ii )

|A0(y)
∥∥∥ĥ′

n

∥∥∥∞ + B0(y)
∥∥∥ĥn∥∥∥∞ |dy +

∑
ω>k

∫
gω(Ii )

|A0(y)
∥∥∥ĥ′

n

∥∥∥∞ + B0(y)
∥∥∥ĥn∥∥∥∞ |dy

=
∫ gk (1)

0.5
|A0(y)

∥∥∥ĥ′
n

∥∥∥∞ + B0(y)
∥∥∥ĥn∥∥∥∞ |dy +

∫ gk (1)

0.5
|A0(y)

∥∥∥ĥ′
n

∥∥∥∞ + B0(y)
∥∥∥ĥn∥∥∥∞ |dy

where we have used that both {gω(Ii )}1≤i≤N ,ω>k and {b−1(Ii )}1≤i≤N form a disjoint cover
of (0.5, gk(1)]; then we have that the expression above is equal to

2
∫ gk (1)

0.5
|A0(y)

∥∥∥ĥ′
n

∥∥∥∞ + B0(y)
∥∥∥ĥn∥∥∥∞ |dy

≤ 2
∥∥∥ĥ′

n

∥∥∥∞ (gk(1) − 0.5)A0(gk(1)) + 2
∥∥∥ĥn∥∥∥∞ Var(1(0.5,gk (1)] · A0).

We can make this arbitrarily small by increasing k as much as is needed. We calculate
Var(1(0.5,gk (1)] ·A0) = ∥∥1(0.5,gk (1)] · B0

∥∥
1 and according to Sect. 7.3.8 and A0(gk(1)) accord-

ing to Sect. 8.
Taking k = 200 gives us

∥∥Wu − Wu∞
∥∥
1 ≤ 9.007 · 10−10. This together with the first

bound gives l∗ ‖Wu − W‖1 ≤ 3.055 · 10−7.

7.3.5 The Contraction Rates of L̂ık in the C
1 Norm

In order to bound
∥∥∥L̂n

δk
|U0

∥∥∥
C1

we use Lemma 7.13 from [6] to bound

∥∥∥(L̂m
δk

− L̂m
n ) f

∥∥∥
C1

≤ Am ‖ f ‖C2 + Bm ‖ f ‖C1

from which we can use Cc,m to bound
∥∥∥L̂m

δk
|U0

∥∥∥
C1

≤ A ‖ f ‖C2 + (B +Cc,m) ‖ f ‖C1 and the

Lasota–Yorke inequality (3) from Sect. 8.2.1, and use the small matrix method from [22].
We have ⎛

⎝
∥∥∥L̂m

δk
f
∥∥∥
C2∥∥∥L̂m

δk
f
∥∥∥
C1

⎞
⎠ ≤

(
Mλ2m D
An Bn + Cc,m

)(‖ f ‖C2

‖ f ‖C1

)
.
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Choosing the value of n that minimises equation (7.3), we take Cc,4 ≤ 0.1427 from

Sect. 7.2.2, together with the calculation
∥∥∥(L̂4

δk
− L̂4

n) f
∥∥∥
1

≤ 8.5 · 10−7 ‖ f ‖C2 + 3.203 ·
10−6 ‖ f ‖C1 , which gives the largest eigenvalue of the small matrix ρ = 0.1557.

7.3.6 The Contraction Rates of L̂ in the C1 Norm

We can use
∥∥∥L̂n

δk
|U0

∥∥∥
C1

≤ ρn,C1 and Lemma 3.3 to get

∥∥∥L̂n |U0

∥∥∥
C1

≤
∥∥∥L̂n

δk
|U0

∥∥∥
C1

+
∥∥∥L̂n

δk
− L̂n

∥∥∥
C1

≤ nC∗(2 + D0D + D)δk + ρn,C1 .

These give us
∥∥∥L̂n |U0

∥∥∥
C1

≤ 2.991 · 10−7 for n = 22.

7.3.7 Bounding Item (4)

From Sect. 7.3.6 we have bounds on
∥∥∥L̂n |U0

∥∥∥
1

≤ Cn and we can then write

∞∑
n=l∗

∥∥∥L̂nW
∥∥∥
1

≤ l∗Cl∗ ‖W‖1
1 − Cl∗

.

Calculating ‖W‖1 gives us ∥∥∥L̂[A0ĥ
′ + B0ĥ]

∥∥∥
1

≤
∥∥∥[A0ĥ

′ + B0ĥ]
∥∥∥
1

≤‖A0‖1
∥∥∥ĥ′
∥∥∥∞ + ‖B0‖1

∥∥∥ĥ∥∥∥∞
≤ max{‖A0‖1 , ‖B0‖1}

∥∥∥ĥ∥∥∥
C1

which we calculate ‖A0‖1 and ‖B0‖1 as described in Sect. 7.3.8, which gives a bound

‖W‖1 ≤ 968.7. We have from Sect. 7.3.6 that
∥∥∥L̂n |U0

∥∥∥
C1

≤ 2.991 · 10−7, for n = 22 so we

choose l∗ to be a multiple of 22 which gives for l∗ = 99

∞∑
n=l∗

∥∥∥L̂nW
∥∥∥
1

≤ 2 · 10−289

7.3.8 Calculating ‖A0‖1 and ‖B0‖1

For calculating
∥∥∥ĥ∗ − ĥ∗

u

∥∥∥
1
we need bounds on ‖A0‖1 and ‖B0‖1, as used in Sects. 7.3.4 and

7.3.7. We have a method to calculate the values of A0 and B0 from Appendix, since B0 = A′
0

we can calculate the integral of
∫
[a,b] B0(x)dx = A0(b) − A0(a). In order to calculate the

integral of A0 we approximate it by taking k = 10 evenly spaced values in each partition
element Ii , we then take

|I j |
k

∑k
j=1 A0(x j ) as the value of the integral on Ii . This has an L1

error of |Ii |
k Var(A0). Taking our approximation of the integral of A0 and adding

|Ii |
k Var(A0)

gives an upper bound of ‖A0‖1.
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Fig. 6 The invariant density of the LSV map for α = 0.125 calculated according to Sect. 2.1 with L1 error of
7.666 · 10−9

7.4 Pulling Back to the Original Map

To get the invariant density and linear response for the full map we must pull them back to
the unit interval with F and Q from Sect. 2.1. The invariant density is fairly straight forward

to calculate and find the error. We want a bound on
∥∥∥h − Fapp

0 ĥn
∥∥∥
1
for which we can use a

bound from (I) in the proof of Theorem 2.18.∥∥∥F0ĥ − Fapp
0 ĥn

∥∥∥
1

≤ 2
∥∥∥ĥn − ĥ

∥∥∥
1
+ 1

21−γ (1 − γ )

∥∥∥ĥn∥∥∥
C0

∑
ω>N∗

∥∥g′
ω

∥∥
B

We use the bounds for γ = 0.5 1
21−γ (1−γ )

≤ 1.418,
∑

ω>N∗
∥∥g′

ω

∥∥
B ≤ 6.51 · 10−10 as

calculated in Sect. 8.1 and
∥∥∥ĥn∥∥∥

C0
≤ 1.5, which gives the second term to be bounded by

1.381 · 10−9. The first term we can bound by 2
∥∥∥ĥn − ĥ

∥∥∥
C1

≤ 7.666 · 10−9 as calculated in

Sect. 7.2.2, giving us
∥∥∥h − Fapp

0 ĥn
∥∥∥
1

≤ 7.666 · 10−9.

As seen in Theorem 2.18 pulling back the linear response requires the following bounds

∥∥h∗ − h∗
u

∥∥
1 ≤

∥∥∥F0ĥ∗ − F0ĥ
∗
u

∥∥∥
1
+
∥∥∥F0ĥ∗

u − Fapp
0 ĥ∗

u

∥∥∥
1

+
∥∥∥Qĥ − Qĥn

∥∥∥
1
+
∥∥∥Qĥn − Qappĥn

∥∥∥
1
.

We bound these in Sect. 7.4.1 giving

(1)
∥∥∥F0ĥ∗ − F0ĥ∗

u

∥∥∥
1

≤ 0.001533

(2)
∥∥∥F0ĥ∗

u − Fapp
0 ĥ∗

u

∥∥∥
1

≤ 4.603 · 10−10

(3)
∥∥∥Qĥ − Qĥn

∥∥∥
1

≤ 6.818 · 10−6

(4)
∥∥∥Qĥn − Qappĥn

∥∥∥
1

≤ 0.006225

This gives us
∥∥∥h∗ − h∗

η

∥∥∥
1

≤ 0.007765.
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7.4.1 Bounding Items (1) and (2)

It is given in Theorem 2.18 that∥∥∥F0ĥ∗ − F0ĥ
∗
u

∥∥∥
1

≤ 2
∥∥∥ĥ∗ − ĥ∗

u

∥∥∥
1
,

which we have from Sect. 7.3 is bounded by 2 · 0.0007666 = 0.001533.

We also have from Theorem 2.18 that
∥∥∥F0ĥ∗

u − Fapp
0 ĥ∗

u

∥∥∥
1
is bounded by

∥∥∥ĥ∗
u

∥∥∥
C0

1

21−γ (1 − γ )

∑
ω>N∗

∥∥g′
ω

∥∥
B .

We can compute explicitly
∥∥∥ĥ∗

u

∥∥∥
C0

and it is bounded by 0.5, 1
21−γ (1−γ )

≤ 1.418 and for

N∗ = 1000,
∑

ω>N∗
∥∥g′

ω

∥∥
B ≤ 6.51 ·10−10 as is shown in Sect. 8.1. These give us the bound∥∥∥F0ĥ∗

u − Fapp
0 ĥ∗

u

∥∥∥
1

≤ 4.603 · 10−10.

7.4.2 Bounding Items (3) and (4)

We can bound
∥∥∥Qĥ − Qĥn

∥∥∥
1
by

1

21−γ (1 − γ )

∑
ω

‖bω‖B
∥∥∥ĥ − ĥn

∥∥∥
C1

for which we will need a bound on
∑

ω ‖bω‖B . In Sect. 8.3 we show is less than 1258; the

bounds from earlier 1
21−γ (1−γ )

≤ 1.418 and
∥∥∥ĥ − ĥn

∥∥∥
C1

≤ 3.833 · 10−9 allow us to prove

that ∥∥∥Qĥ − Qĥn
∥∥∥
1

≤ 6.818 · 10−6.

We now bound∥∥∥Qĥn − Qappĥn
∥∥∥
1

≤ 1

21−γ (1 − γ )

⎡
⎣sup

ω
|aω| ·

∥∥∥ĥ′
n

∥∥∥
C0

·
∑

|ω|>N∗

∥∥g′
ω

∥∥
B +

∥∥∥ĥn∥∥∥
C0

∑
ω>N∗

‖bω‖B
⎤
⎦ .

We need a bound on
∑

ω |aω| which we show is bounded by 7107 in Sect. 8.4, and the

bounds from computer approximations of ĥn which gives us
∥∥∥ĥn∥∥∥

C0
≤ 1.5 and

∥∥∥ĥ′
n

∥∥∥
C0

≤ 1.

We can use the same method from Sect. 8.3 to calculate
∑

ω>N∗ ‖bω‖B ≤ 0.002931. All
this together gives us ∥∥∥Qĥn − Qappĥn

∥∥∥
1

≤ 0.006225.

7.5 Normalizing the Density and the Linear Response

In this subsection we follow the estimates in Sect. 5.
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First of all, we compute∥∥∥∥ hn∫
hndm

− h∫
hdm

∥∥∥∥
1

≤ 4.11 · 10−7.

Following through the calculations we bound (5.1), the L1 error on the normalized linear
response by 0.01501.

8 Effective Bounds for [4, 36]

In this section we will use often the following notation following [36]. Let T0 be the left
branch of the map T , let z ∈ [0, 1] and

zr := T−r
0 (z).

By (.)′ we denote the derivative with respect to z. To simplify the lookup of constants, they
are presented in table 2.

8.1 Estimating the Tail
∑

!>N∗
∥
∥
∥g′

!

∥
∥
∥
B

For this we look at [4, Lemma 5.2] which gives∥∥g′
ω

∥∥
B ≤ C8 sup

z∈(0,0.5]
zγ (1 + nzαα2α)−1/α−1.

using calculations from Sect. 8.3

sup
z∈(0,0.5]

zγ (1 + nzαα2α)−1/α−1

≤ sup
z∈(0,0.5]

zγ−1−α(α2α)−1/α−1

(z−αα−12−α + n)1/α+1

≤ Csumn
−γ /α

so
∑

n>N∗
∥∥g′

ω

∥∥
B ≤ C8 · Csum[ζ(γ /α) −∑N∗

j=1 j−γ /α].
The constantC8 comes from [36] where it is shown to be finite, but, when we calculateC8

according to their proof we get C8 = exp (1 + (α + 1)222αC2
2

π2

6 ), which is of order 10269.
Therefore we need a sharper bound for C8. We start similarly

z′n = �n
j=1

1

1 + (α + 1)2αzαj
= exp

⎛
⎝ n∑

j=1

− log (1 + (α + 1)2αzαj )

⎞
⎠

= exp

⎛
⎝ n∑

j=1

−(α + 1)2αzαj +
n∑
j=1

[− log (1 + (α + 1)2αzαj ) + (α + 1)2αzαj ]
⎞
⎠

≤ e · (1 + nzα0α2α)−(α+1)/α · exp
n∑
j=1

[− log (1 + (α + 1)2αzαj ) + (α + 1)2αzαj ])
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Table 2 Table of constants

Label Description Value

α Parameter for the LSV map 0.125

γ Parameter for ‖·‖B 0.5

δk The size of the interval different from the true induced map 2.146 · 10−12

η Partition size for Ulam discretisation 9.537 · 10−07

N∗ The number of branches used to approximate operators F and Q 1000

l∗ The number of iterations used to calculate ĥ∗
η 99

ν The number of Lasota–Yorke inequalities used to bound error
in the Chebyshev projection

5

n Highest degree of Chebyshev polynomials used for the
Chebyshev discretisation

1024

C1
1

1+α2α 0.88

C2
1

α(1−α)2α−1 16.77

C3
1
α + log (C−1/α

1 ) 9.022

C4
1
α − log (C1/α

1 )

log (2) 9.475

C5 2α 1.091

C6 (α + 1)2α 1.227

C7 α(α + 1)2α 0.1534

C8 A computed value from Sect. 8.1 2.766

C10 C2 · C5 · C8 50.58

C11 C2 · C6 · C8
− log (1/C2)+1

α 1739

C12 2αC2
2 · C4 · C7 · C8· 1232

Csum
(
1+α−γ

γ )−γ /α+1/α+1(α2α)−γ /α

(
1+α−γ

γ )1/α+1
5.981

D0 A bound on the distortion of the branches of the induced map 2.956

D A bound on the distortion of the inverse of the branches of the
induced map

19.22

where in the last line we use the calculation in [36] following equation (5.7) which gives,

−(α + 1)2α
n∑
j=1

zαj ≤ −α + 1

α
(log (1 + nzα0α2α) + C

where C comes from

r∑
j=1

1

z−α
0 + jα2α

≥
∫ r

1

zα0
1 + t zα0α2α

dt − C .

Since the function in the integral is monotonically decreasing and
zα0

1+t zα0α2α ≤ 1 we can

bound C by 1, which gives us the factor of e.
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In the next paragraphwewill use the Taylor expansion of− log(1+x), however this is only
convergent for x ∈ (−1, 1), so first we choose a j∗ large enough that −(α+1)2αC2

j∗ ∈ (−1, 1).

z′n ≤ e · (1 + nzα0α2α)−(α+1)/α · exp
n∑
j=1

[− log (1 + (α + 1)2αzαj ) + (α + 1)2αzαj ])

= e · (1 + nzα0α2α)−(α+1)/α · exp
j∗−1∑
j=1

[− log (1 + (α + 1)2αzαj ) + (α + 1)2αzαj ])

× exp
n∑

j= j∗
[− log (1 + (α + 1)2αzαj ) + (α + 1)2αzαj ])

For exp
(∑n

j= j∗ [− log (1 + (α + 1)2αzαj ) + (α + 1)2αzαj ]
)
we use

exp

⎛
⎝ n∑

j= j∗
[− log (1 + (α + 1)2αzαj ) + (α + 1)2αzαj ]

⎞
⎠

≤ exp

⎛
⎝ n∑

j= j∗
[− log (1 + (α + 1)2αC2 j

−1) + (α + 1)2αC2 j
−1]
⎞
⎠.

Substituting in the Taylor expansion of log(1 + x) where x = (α + 1)2αC2 j−1 gives

exp

⎛
⎝ n∑

j= j∗

∞∑
m=2

(−(α + 1)2αC2)
m

m
j−m

⎞
⎠

= exp

⎛
⎝ ∞∑

m=2

n∑
j= j∗

(−(α + 1)2αC2)
m

m
j−m

⎞
⎠

= exp

⎛
⎝ ∞∑

m=2

(−(α + 1)2αC2)
m

m

n∑
j= j∗

j−m

⎞
⎠

≤ exp

⎛
⎝ ∞∑

m=2

(−(α + 1)2αC2)
m

m
[ζ(m) −

j∗∑
j=1

1

jm
]
⎞
⎠

≤ exp

⎛
⎝ ∞∑

m=2

(−(α + 1)2αC2)
m

m
[ζ(2) −

j∗∑
j=1

1

j2
]
⎞
⎠

≤ exp (−[ζ(2) −
j∗∑
j=1

1

j2
] · [log (1 + (α + 1)2αC2) − (α + 1)2αC2])

= exp ((α + 1)2αC2[ζ(2) −
j∗∑
j=1

1

j2
]) · (1 + (α + 1)2αC2)

−[ζ(2)−∑ j∗
j=1

1
j2

]
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To get our final estimate we need to bound

exp
j∗−1∑
j=1

[− log (1 + (α + 1)2αzαj ) + (α + 1)2αzαj ]),

Since there are a finite number of terms we can bound it from above through the use of
rigorous numerical methods.

Choosing j∗ = 586 gives us that −(α+1)2αC2
j∗ = −0.02057 ∈ (−1, 1) and C8 ≥ 2.766 is

an upper bound.
This gives us that for N∗ = 1000,

∑
ω>N∗

∥∥g′
ω

∥∥
B ≤ 6.51 · 10−10.

8.2 Bounds for Lemma 3.3

We want a bound on D0 =
∥∥∥ g′′

ω

g′
ω

∥∥∥∞. In [36] they have bounds for zr where g′
r+1 = 0.5z′r and

g′′
r+1 = 0.5z′′r so we may use the bound from [36, Lemma 5.4] which gives

z′′r
z′r

= α(α + 1)2αzα−1
r+1 z

′
r+1

1 + (α + 1)2αzαr+1
+ z′′r+1

z′r+1

which we can use to get a bound on z′′r
z′r

− z′′r+1
z′r+1

. We use Lemmas 5.2 and 5.3 from [36] to get

z′r ≤ C8(α2
α)−(α+1)/αr−(α+1)/αz−α−1

0

where we calculate C8 in Sect. 8.1, and

zα−1
r = (zαr )(α−1)/α ≤

(
21−α

α(1 − α)

)(α−1)/α

r−(α−1)/α

giving us

zα−1
r z′r ≤ C8

α−221−1/α−2α

(1 − α)(α−1)/α
r−2z−α−1

0 .

Then

z′′r
z′r

− z′′r+1

z′r+1
≤α(α + 1)2αC8

α−221−1/α−2α

(1 − α)(α−1)/α
r−2z−α−1

0

≤(α + 1)C8
α−121−1/α−α

(1 − α)(α−1)/α
r−20.5−α−1

from which follows that

supr

∥∥∥∥ z′′rz′r
∥∥∥∥∞

≤ π2 0.5
−α−1

6
(α + 1)C8

α−121−1/α−α

(1 − α)(α−1)/α

which for α = 0.125 gives D0 = 2.956.
Since

log

(
g′
ω(x)

g′
ω(y)

)
= [log(g′

ω(ζ ))]′(x − y)

= g′′
ω(ζ )

g′
ω(ζ )

(x − y) ≤ g′′
ω(ζ )

g′
ω(ζ )

,
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we have that D ≤ exp(D0) ≤ 1.286.

8.2.1 Lasota–Yorke Inequalitys for L̂ık and L̂.

We use some estimates from [6];

(1) From Proposition 7.2 we have var(L̂ f ) ≤ λvar( f )+ B ‖ f ‖1 with B :=
∥∥∥T̂ ′′/(T̂ ′)2

∥∥∥∞
and λ := 1/ inf x |Dx T̂ |;

(2) From Proposition 7.4
∥∥∥L̂n f

∥∥∥
C1

≤ Mλn ‖ f ‖C1 + M2 ‖ f ‖∞ with M := 1 + B
1−λ

;

(3) From Proposition 7.6
∥∥∥L̂n f

∥∥∥
C2

≤ M(λ2)n ‖ f ‖C2 + D ‖ f ‖C1 where D := max{
3 λBM

1−λ
, 3M

(
B

1−λ

)2 + MZ

}
+ Mλ + M2. Z being

1

1 − λ2

(∥∥∥T̂ ′′′/(T̂ ′)3
∥∥∥∞ + 3λ

1 − λ

∥∥∥T̂ ′′/(T̂ ′)2
∥∥∥∞

)
.

By the construction of T̂δk we know 1/ infx |Dx T̂δk | = 1/ infx |Dx T̂ |,
∥∥∥T̂ ′′

δk
/(T̂ ′

δk
)2
∥∥∥∞ ≤∥∥∥T̂ ′′/(T̂ ′)2

∥∥∥∞ and
∥∥∥T̂ ′′′

δk
/(T̂ ′

δk
)3
∥∥∥∞ ≤

∥∥∥T̂ ′′′/(T̂ ′)3
∥∥∥∞ so bounding these values for T̂ gives

us inequalities that are true for both.

We note that
∥∥∥T̂ ′′/(T̂ ′)2

∥∥∥∞ = supω

∥∥g′′
ω/(g′

ω)
∥∥∞ = D0 which is calculated in Sect. 8.2.

We can calculate
∥∥∥T̂ ′′′/(T̂ ′)3

∥∥∥∞ a similar way as follows,

∥∥∥∥ T ′′′

(T ′)3

∥∥∥∥∞
=
∥∥∥∥( g′′′

ω

(g′
ω)4

+ 3
(g′′

ω)2

(g′
ω)5

)(g′
ω)3
∥∥∥∥∞

≤
∥∥∥∥g′′′

ω

g′
ω

∥∥∥∥∞
+ 3

∥∥∥∥∥
(
g′′
ω

g′
ω

)2∥∥∥∥∥∞

so we need to bound
∥∥∥ g′′′

ω

g′
ω

∥∥∥∞ and

∥∥∥∥( g′′
ω

g′
ω

)2∥∥∥∥∞
, the second of which is D2

0 from Sect. 8.2. In

[36] it is proven that
∥∥∥ g′′′

ω

g′
ω

∥∥∥∞ is bounded and their method gives that it is less than

∞∑
r=0

(α − 1)α(α + 1)2αzα−2
r+1 (z′r+1)

2 + 3α(α + 1)2αzα−1
r+1 z

′
r+1

z′′r+1

z′r+1

where gω = zr ◦ g1, so z′r = g′
ω

2 and z′′′r = g′′′
ω

2 . We have bounds on
z′′r+1
z′r+1

and zα−1
r+1 z

′
r+1 from

Sect. 8.2, and we bound zα−2
r+1 using Lemma 5.2 of [36] to get zα−2

r+1 ≤ ( C2
r+1 )

(α−2)/α . We

bound (z′r+1)
2 using Lemma 5.3 of [36] to get (z′r+1)

2 ≤ C2
8 (2

αα)−2(α+1)/αz−2(α+1)
0 (r +

1)−2(α+1)/α so we can bound
∥∥∥ g′′′

ω

g′
ω

∥∥∥∞ by

(
z−α−4
0

∞∑
r=0

(r + 1)−3

)
[(α − 1)α(α + 1)2αC (α−2)/α

2 C2
8 (2

αα)−2(α+1)/α + 3α(α + 1)2αC]

where C is the product of the values from section 8.2. Substituting in the maximizing
value of z0 = 0.5 and note

∑∞
r=0(r + 1)−3 = ζ(3) to get a bound of 0.08016.

This gives us a bound of
∥∥∥ T ′′′

(T ′)3
∥∥∥∞ ≤ 0.2696 and we have

123



  192 Page 40 of 49 I. Nisoli, T. Taylor-Crush

• λ = 0.5,
• B ≤ 0.2513,
• M ≤ 1.503,
• Z ≤ 1.365,
• D ≤ 12.19.

These values give us the explicit bounds

(1) Var(L̂δk f ) ≤ 0.5Var( f ) + 0.2513 ‖ f ‖1;
(2)

∥∥∥L̂n
δk
f
∥∥∥
C1

≤1.503·0.5n ‖ f ‖C1 + 2.258 ‖ f ‖∞;

(3)
∥∥∥L̂n

δk
f
∥∥∥
C2

≤1.503·0.25n ‖ f ‖C2 + 12.19 ‖ f ‖C1 .

These Lasota–Yorke inequalities give us the bounds C∗ = Mλ + M2 = 7.452 for Lemma
3.6.

For a bound on
∥∥∥ĥδk

∥∥∥
C1

and
∥∥∥ĥδk

∥∥∥
C1

we observe that
∥∥∥ĥδk

∥∥∥
1

= 1, and L̂δk ĥδk = ĥδk , the

inequalities above give us

(1) var(ĥδk ) ≤ 0.2513 �⇒
∥∥∥ĥδk

∥∥∥
BV

≤ 1 + 0.2513 = 1.251

(2)
∥∥∥ĥδk

∥∥∥
C1

≤ 2.258
∥∥∥ĥδk

∥∥∥∞ ≤ 2.258
∥∥∥ĥδk

∥∥∥
BV

= 2.825

(3)
∥∥∥ĥδk

∥∥∥
C2

≤ 12.19
∥∥∥ĥδk

∥∥∥
C1

≤ 34.45

8.3 Bounding
∑

!

∥
∥
∥@�g′

!

∥
∥
∥
B

For this we use from Lemma 5.2 [4].

∑
ω

∥∥∂εg
′
ω

∥∥
B ≤ C5

∞∑
n=1

sup
α∈U

sup
z∈(0,0.5]

|zγ · z′n |
n∑
j=1

zαj

+ C6

∞∑
n=1

sup
α∈U

sup
z∈(0,0.5]

|zγ · z′n |
n∑
j=1

zαj | log z j |

+ C7

∞∑
n=1

sup
α∈U

sup
z∈(0,0.5]

|zγ · z′n |
n∑
j=1

zα−1
j |∂αz j |

where C5 = 2α , C6 = (α + 1)2α and C7 = α(α + 1)2α . We now use our bound from 8.1 get

C8 for z′n ≤ C8(1 + r zα0 2
α)− α+1

α . We use this to bound |zγ · z′n | by C8zγ (1 + nzα0 2
α)− α+1

α .

We then use zαn < C2
n to get zαj ≤ C2 j−1, log(z j ) ≤ − log (1/C2)+1

α
log j . Using the fact

that zα−1
n |∂αzn | = zαn

|∂α zn |
zn

and inequality (5.9) from [36]

zα−1
n |∂αzn | ≤ zαn

n∑
j=1

2αzαj (− log (2z j )) ≤ 2α C
2
2

n

n∑
j=1

j−1(− log(2z j ))

We now use the following

− log(2z j ) ≤ C4 log( j)
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To get a value on C4 we do the following,

− log(2z j )

log( j)
≤ − log(2(C1

j )1/αz0)

log( j)
≤ − log(2C

1
α

1 z0) + 1
α
log( j)

log( j)

≤ 1

α
− log(2C

1
α

1 z0)

log( j)
≤ 1

α
− log(2C

1
α

1 z0)

log(2)

= C4 ≤ 9.475

wherewe note that ∂αz j = 0 for |ω| = 1 and so j = 1 this is still a valid bound for zα−1
j |∂αz j |

which gives us
∑

ω ‖bω‖B ≤ i + i i + i i i where

(i) ≤ C10

∞∑
n=1

sup
α∈U

sup
z∈(0,0.5]

zγ (1 + nzαα2α)−1/α−1
n∑
j=1

( j−1)

(ii) ≤ C11

∞∑
n=1

sup
α∈U

sup
z∈(0,0.5]

zγ (1 + nzαα2α)−1/α−1
n∑
j=1

( j−1 log j)

(iii) ≤ C12

∞∑
n=1

sup
α∈U

sup
z∈(0,0.5]

zγ (1 + nzαα2α)−1/α−1
n∑
j=1

( j−1
j∑

k=1

k−1 log k)

where C10 = C5 ·C8 ·C2, C11 = C6 ·C8 ·C2 · − log (1/C2)+1
α

and C12 = 2αC4 ·C7 ·C8 ·C2
2 .

To bound (i) we use that
∑n

j=1 j−1 ≤ 1 + log(n) to get

zγ (1 + nzαα2α)−1/α−1
n∑
j=1

( j−1) ≤ zγ (1 + log (n))

(1 + nzαα2α)1/α+1

≤ zγ−α(1/α+1)(α2α)−1/α−1(1 + log (n))

(z−αα−12−α + n)1/α+1 ≤ zγ−1−α(α2α)−1/α−1(1 + log (n))

(z−αα−12−α + n)1/α+1 .

We can use this to bound

∞∑
n=1

sup
α∈U

sup
z∈(0,0.5]

zγ (1 + nzαα2α)−1/α−1(1 + log(n))

≤
∞∑
n=1

sup
α∈U

sup
z∈(0,0.5]

zγ−1−α(α2α)−1/α−1(1 + log (n))

(z−αα−12−α + n)1/α+1

=
∞∑
n=1

sup
α∈U

sup
z∈(0,0.5]

zγ−1−α(α2α)−1/α−1

(z−αα−12−α + n)1/α+1 + zγ−1−α(α2α)−1/α−1 log (n)

(z−αα−12−α + n)1/α+1

In order to calculate bounds we must find the z ∈ (0, 0.5] that gives us the maximum value,
which we do by finding the zero of the derivative of the part that depends on z,

∂z
zγ−1−α

(z−αα−12−α + n)1/α+1

= ∂z zγ−1−α

(z−αα−12−α + n)1/α+1 + zγ−1−α∂z
1

(z−αα−12−α + n)1/α+1 .
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Calculating the derivatives and rearranging gives,

= (γ − 1 − α)zγ−2−α

(z−αα−12−α + n)1/α+1 + zγ−1−α −(1/α + 1) · −α · z−α−1 · α−12−α

(z−αα−12−α + n)1/α+2

= (γ − 1 − α)zγ−2−α

(z−αα−12−α + n)1/α+1 + (1 + α) · zγ−2α−2 · α−12−α

(z−αα−12−α + n)1/α+2

= zγ−α−2

(z−αα−12−α + n)1/α+1

(
(γ − 1 − α) + (1 + α)z−αα−12−α

(z−αα−12−α + n)

)

which is zero when −(γ − 1 − α) = (1+α)z−αα−12−α

(z−αα−12−α+n)
, we let y = z−αα−12−α which gives

− (γ − 1 − α) = (1 + α)
y

y + n

�⇒ − (γ − 1 − α)n + (1 + α)y − γ y = (1 + α)y

�⇒ − (γ − 1 − α)n − γ y = 0

Therefore y = (1+α−γ )
γ

n and

z =
(

α2α (1 + α − γ )

γ
n

)−1/α

.

We substitute this into the first sum

∞∑
n=1

sup
α∈U

sup
z∈(0,0.5]

zγ−1−α(α2α)−1/α−1

(z−αα−12−α + n)1/α+1

=
∞∑
n=1

sup
α∈U

(α2α (1+α−γ )
γ

n)−γ /α+1/α+1(α2α)−1/α−1

(α2α (1+α−γ )
γ

nα−12−α + n)1/α+1
,

therefore

∞∑
n=1

sup
α∈U

(
(1+α−γ )

γ

)−γ /α+1/α+1
n−γ /α(α2α)−γ /α

(
1+α−γ

γ
+ 1
)1/α+1

= sup
α∈U

(
(1+α−γ )

γ

)−γ /α+1/α+1
(α2α)−γ /α

(
1+α−γ

γ
+ 1
)1/α+1

∞∑
n=1

n−γ /α

= sup
α∈U

(
(1+α−γ )

γ

)−γ /α+1/α+1
(α2α)−γ /α

(
1+α−γ

γ
+ 1
)1/α+1 ζ(γ /α).
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By the same calculation we have the second sum is bounded by

∞∑
n=1

sup
α∈U

sup
z∈(0,0.5]

zγ−1−α(α2α)−1/α−1 log (n)

(z−αα−12−α + n)1/α+1

≤ sup
α∈U

(
(1+α−γ )

γ

)−γ /α+1/α+1
(α2α)−γ /α

(
1+α−γ

γ
+ 1
)1/α+1

∞∑
n=1

n−γ /α log(n)

= sup
α∈U

(
(1+α−γ )

γ

)−γ /α+1/α+1
(α2α)−γ /α

(
1+α−γ

γ
+ 1
)1/α+1 |ζ ′(γ /α)|

which gives us

(I ) ≤ C10 · Csum(ζ(γ /α) + |ζ ′(γ /α)|).

where Csum = supα∈U
(

(1+α−γ )
γ

)−γ /α+1/α+1(α2α)−γ /α

(
1+α−γ

γ
+1)1/α+1

≤ 5.981.

To bound (ii) we do the same, but using
∑n

j=1 log ( j) j−1 ≤ log2 (n)

∞∑
n=1

sup
α∈U

sup
z∈(0,0.5]

zγ (1 + nzαα2α)−1/α−1
n∑
j=1

( j−1 log j)

≤ Csum

∞∑
n=1

n−γ /α log2 (n)

≤ Csumζ ′′(γ /α)

giving

(ii) ≤ C11 · Csumζ ′′(γ /α).

For (iii) we use
∑n

j=1( j
−1∑ j

k=1 k
−1 log k) ≤∑n

j=1( j
−1 log2( j)) ≤ log3(n) to get

∞∑
n=1

sup
α∈U

sup
z∈(0,0.5]

zγ (1 + nzαα2α)−1/α−1
n∑
j=1

( j−1
j∑

k=1

k−1 log k)

≤ Csum

∞∑
n=1

n−γ /α log3 (n)

≤ Csum |ζ ′′′(γ /α)|

This implies directly that

(iii) ≤ C12 · Csumζ ′′′(γ /α).

In order to get the bound closer, we can use the technique of calculating the first N terms
of
∑∞

n=1 ‖bω‖B using the computer calculations from 9 and the range estimation method

123



  192 Page 44 of 49 I. Nisoli, T. Taylor-Crush

from [47].

∑
ω

‖bω‖B ≤ C10 · Csum(ζ(γ /α) + |ζ ′(γ /α)| −
N∑
j=1

[ j−γ /α + j−γ /α log ( j)])

+ C11 · Csum(ζ ′′(γ /α) −
N∑
j=1

[ j−γ /α log2 ( j)])

+ C12 · Csum(|ζ ′′′(γ /α)| −
N∑
j=1

[ j−γ /α log3( j)])

+
∑

1≤|ω|≤N

‖bω‖B .

We calculate upper bounds on the derivatives of ζ(x) using methods from [16].
Choosing N = 1000 and j∗ = 586 gives us

∑
ω ‖bω‖B ≤ 1258. The tail of the sum

starting at n = 1000 gives
∑

|ω|≥n ‖bω‖B ≤ 0.002931.

8.4 Bounding sup! |a!|

For supω |aω| we use Lemma 5.2 from [36]. The proof of this lemma gives us

zα0
n

· 1

1 + α2α
≤ zαn ≤ 1

z−α
0 + nα(1 − α)2α−1

from which we get C1 = 1
1+α2α and C2 = 1

α(1−α)2α−1

zα0
n

· C1 ≤ zαn ≤ 1

n
· C2. (8.1)

Then zα0
C1
n ≤ zαn gives us − log z0 ≤ −1

α
log C1

n − log z0. To get a C3 such that −1
α

log C1
n ≤

C3 logg (n) we take C3 = log (C−1/α
1 ) + 1

α
. Since C3 > 1

− log z0 ≤ C3(logg (n) − log z0).

Then from the proof of Lemma 5.2 from [4] we have

∂αzn+1 ≤ 2α
n+1∑
j=1

zα+1
j (− log 2z j ) (8.2)

where supω |aω| ≤ supz0∈[0,0.5] ∂αzn+1. We use the fact that xα+1(− log 2x) is monotonicly

increasing below x = 0.5 exp ( −1
α+1 ) to say that if C1/α

2 j∗−1/α ≤ 0.5 exp ( −1
α+1 ) then

∂αzn+1 ≤ 2α
n+1∑
j=1

zα+1
j (− log 2z j )

= 2α
n+1∑
j= j∗

zα+1
j (− log 2z j ) + 2α

j∗−1∑
j=1

zα+1
j (− log 2z j ).
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We may use a computer to calculate the sum up to j∗ − 1 and we bound the rest as follows,

2α
n+1∑
j= j∗

zα+1
j (− log 2z j )

≤ 2α
n+1∑
j= j∗

[C1/α
2 j−1/α]α+1

(− log (2C1/α
2 j−1/α))

= 2α
n+1∑
j= j∗

[C1/α
2 j−1/α]α+1

(− log ( j−1/α) − log (2C1/α
2 ))

≤ 2α
n+1∑
j= j∗

[C1/α
2 j−1/α]α+1

(− log ( j−1/α))

≤ 2αC (α+1)/α
2

α

n+1∑
j= j∗

j−1−1/α log j .

Noticing that
∑∞

j=1 j−1−1/α log j = −ζ ′(1 + 1/α) which can be calculated by methods
from [16] gives us

sup
ω

|aω| ≤ [−ζ ′(1 + 1/α) −∑ j∗−1
j=1 j−1−1/α log j]2α

α(α(1 − α)2α−1)(α+1)/α
+ 2α

j∗−1∑
j=1

zα+1
j (− log 2z j )

(8.3)

which for α = 0.125 and taking j∗ = 586 gives supω |aω| ≤ 7107
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Appendix A: Computing Derivatives

In order to calculate A0, B0, aω and bω we use an iterative formula. We start with

gω ◦ Tω(x) = x
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from which we use the chain rule to get

(gω ◦ Tω)′(x) = g′
ω ◦ Tω(x) · T ′

ω(x) = 1

�⇒ g′
ω(x) = 1

T ′
ω ◦ gω(x)

and

∂α(gω ◦ Tω)(x) = ∂αgω ◦ Tω(x) + g′
ω ◦ Tω(x) · ∂αTω(x) = 0

�⇒ ∂αgω(x) = −∂αTω ◦ gω(x)

T ′
ω ◦ gω(x)

.

We then use further chain rules to get

(g′
ω ◦ Tω)′(x) = g′′

ω ◦ Tω(x) · T ′
ω(x) = − T ′′

ω (x)

(T ′
ω(x))2

�⇒ g′′
ω(x) = − T ′′

ω ◦ gω(x)

(T ′
ω ◦ gω(x))3

and

∂α(g′
ω ◦ Tω)(x) = ∂αg

′
ω ◦ Tω(x) + g′′

ω ◦ Tω(x) · ∂αTω(x) = ∂α

1

T ′
ω(x)

�⇒ ∂αg
′
ω(x) = T ′′

ω ◦ gω(x) · ∂αTω ◦ gω(x)

(T ′
ω ◦ gω)3

− ∂αT ′
ω ◦ gω(x)

(T ′
ω ◦ gω(x))2

.

We already can calculate gω so we need to calculate ∂αTω, T ′
ω, ∂αT ′

ω and T ′′
ω . Note that

Tω = T n
0 ◦ T1 where |ω| = n, so

(T n
0 ◦ T1)

′ = (T n
0 )′ ◦ T1 · T ′

1

∂α(T n
0 ◦ T1) = ∂α(T n

0 ) ◦ T1 + (T n
0 )′ ◦ T1 · ∂αT1

(T n
0 ◦ T1)

′′ = (T n
0 )′′ ◦ T1 · (T ′

1)
2 + (T n

0 )′ ◦ T1 · T ′′
1

∂α(T n
0 ◦ T1)

′ = ∂α(T n
0 )′ ◦ T1 · T ′

1 + (T n
0 )′′ ◦ T1 · T ′

1 · ∂αT1 + (T n
0 )′ ◦ T1 · ∂αT

′
1

which we may write as a matrix⎛
⎜⎜⎝

T ′
ω

∂αTω

T ′′
ω

∂αT ′
ω

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

T ′
1 0 0 0

∂αT1 1 0 0
T ′′
1 0 (T ′

1)
2 0

∂αT ′
1 0 T ′

1∂αT1 T ′
1

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝

(T n
0 )′ ◦ T1

∂α(T n
0 ) ◦ T1

(T n
0 )′′ ◦ T1

∂α(T n
0 )′ ◦ T1

⎞
⎟⎟⎠ .

By the same logic we may write⎛
⎜⎜⎝

T ′
ω

∂αTω

T ′′
ω

∂αT ′
ω

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

T ′
1 0 0 0

∂αT1 1 0 0
T ′′
1 0 (T ′

1)
2 0

∂αT ′
1 0 T ′

1∂αT1 T ′
1

⎞
⎟⎟⎠

·

⎛
⎜⎜⎝

T ′
0 ◦ T1 0 0 0

∂αT0 ◦ T1 1 0 0
T ′′
0 ◦ T1 0 (T ′

0 ◦ T1)2 0
∂αT ′

0 ◦ T1 0 T ′
0 ◦ T1∂αT0 ◦ T1 T ′

0 ◦ T1

⎞
⎟⎟⎠
⎛
⎜⎜⎝

(T n−1
0 )′ ◦ T0 ◦ T1

∂α(T n−1
0 ) ◦ T0 ◦ T1

(T n−1
0 )′′ ◦ T0 ◦ T1

∂α(T n−1
0 )′ ◦ T0 ◦ T1

⎞
⎟⎟⎠ .
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and use induction to give a series of matrices such that⎛
⎜⎜⎝

T ′
ω

∂αTω

T ′′
ω

∂αT ′
ω

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

T ′
1 0 0 0

∂αT1 1 0 0
T ′′
1 0 (T ′

1)
2 0

∂αT ′
1 0 T ′

1∂αT1 T ′
1

⎞
⎟⎟⎠

·

⎛
⎜⎜⎝

T ′
0 ◦ T1 0 0 0

∂αT0 ◦ T1 1 0 0
T ′′
0 ◦ T1 0 (T ′

0 ◦ T1)2 0
∂αT ′

0 ◦ T1 0 T ′
0 ◦ T1∂αT0 ◦ T1 T ′

0 ◦ T1

⎞
⎟⎟⎠ . . .

⎛
⎜⎜⎝

T ′
0 ◦ T n−1

0 ◦ T1
∂αT0 ◦ T n−1

0 ◦ T1
T ′′
0 ◦ T n−1

0 ◦ T1
∂αT ′

0 ◦ T n−1
0 ◦ T1

⎞
⎟⎟⎠ .

Using the explicit formulas for our branches we have

T0 = x(1 + (2x)α)

T1 = 2x − 1

T ′
0 = 1 + (1 + α)(2x)α

T ′
1 = 2

∂αT0 = (log(x) + log(2))2αxα+1

∂αT1 = 0

T ′′
0 = α(1 + α)2αxα−1

T ′′
1 = 0

∂αT
′
0 = (2x)α((α + 1)(log(x) + log(2)) + 1)

∂αT
′
1 = 0

and we are able to calculate explicitly the values A0, B0, aω and bω. To calculate aω and bω

we use gω = g1 ◦ gn−1
0 and we use Tm

0 ◦ T1 ◦ g1 ◦ gn−1
0 = gn−1−m

0 to calculate⎛
⎜⎜⎝

T ′
ω ◦ gω

∂αTω ◦ gω

T ′′
ω ◦ gω

∂αT ′
ω ◦ gω

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

T ′
1 ◦ gω 0 0 0

∂αT1 ◦ gω 1 0 0
T ′′
1 ◦ gω 0 (T ′

1)
2 ◦ gω 0

∂αT ′
1 ◦ gω 0 T ′

1 ◦ gω∂αT1 ◦ gω T ′
1 ◦ gω

⎞
⎟⎟⎠

·

⎛
⎜⎜⎝

T ′
0 ◦ gn0 0 0 0

∂αT0 ◦ gn0 1 0 0
T ′′
0 ◦ gn0 0 (T ′

0 ◦ gn0 )
2 0

∂αT ′
0 ◦ gn0 0 T ′

0 ◦ gn0∂αT0 ◦ gn0 T ′
0 ◦ gn0

⎞
⎟⎟⎠ . . .

⎛
⎜⎜⎝

T ′
0 ◦ g0

∂αT0 ◦ g0
T ′′
0 ◦ g0

∂αT ′
0 ◦ g0

⎞
⎟⎟⎠

where we calculate gm0 using the shooting method from section 7.1.1.
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