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ABSTRACT

We prove the existence of multiple noise-induced transitions in the Lasota–Mackey map, which is a class of one-dimensional random dynami-
cal system with additive noise. The result is achieved with the help of rigorous computer assisted estimates. We first approximate the stationary
distribution of the random dynamical system and then compute certified error intervals for the Lyapunov exponent. We find that the sign of
the Lyapunov exponent changes at least three times when increasing the noise amplitude. We also show numerical evidence that the standard
non-rigorous numerical approximation by finite-time Lyapunov exponent is valid with our model for a sufficiently large number of iterations.
Our method is expected to work for a broad class of nonlinear stochastic phenomena.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0070198

Noise-induced phenomena emerge in nonlinear dynamics in the
presence of noise. The central problem of noise-induced phe-
nomena is to study in which way the asymptotic behavior of the
deterministic system is affected by the external noise, and how
much its macroscopic behavior is altered. Despite the simplicity
of the problem, most non-trivial noise-induced phenomena have
not been analyzed rigorously. Recently, the rigorous computer
assisted estimation of statistical properties of random dynami-
cal systems has been developed. We apply these methods to prove
the existence of multiple noise-induced transitions in a class of
chaotic map with additive noise.

I. INTRODUCTION

Often, stochastic noise causes qualitative changes in the sta-
tistical and dynamical behavior of chaotic dynamical systems.
For example, a small additive noise can turn a chaotic system
into an orderly one, which is called noise-induced order. Noise-
induced order was first discovered in a one-dimensional map con-
structed from an experimental time series of Belousov–Zhabotinsky

reaction.15 Chaos-to-order transitions increasing the noise ampli-
tude were observed through several physical quantities, includ-
ing the Lyapunov exponent, the Kolmogorov–Sinai entropy, and
the power spectrum of the dynamics. Subsequently, noise-induced
order was confirmed through measurements of experiments of
Belousov–Zhabotinsky reaction.21 Multiple transitions from chaotic
regime to orderly regime, and then to a different chaotic regime,
then back to a different regular regime, have also been found in the
models of the random dynamical system when we increase the noise
amplitude.20 In this paper, we focus on the multiple noise-induced
transitions in the Lasota–Mackey map13 introduced in Sec. III.

Recently, the existence of noise-induced order in BZ map has
been mathematically proved by Galatolo et al.8 by validated numer-
ics, showing a change in the sign of the Lyapunov exponent as the
noise amplitude increases. We apply their methods to the computa-
tion of the Lyapunov exponents of the Lasota–Mackey map to show
the existence of multiple noise-induced transitions.

The rigorous approximation of the Lyapunov exponents is
based on the approximation of the stationary distribution by the
Ulam method,5 which approximates transfer operators by a finite-
dimensional transition matrix. Note that the Ulam method works
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especially well for random dynamical systems because the addition
of noise simplifies the functional analytic properties of the trans-
fer operators and smooths out the fine details of the stationary
distributions.

This paper is organized as follows. In Sec. II, we describe
the Lyapunov exponent of random dynamical systems and clar-
ify our problem. In Sec. III, we introduce Lasota–Mackey maps, a
class of random map with additive noise, and discuss noise-induced
transitions by non-rigorous numerical estimates to show the phe-
nomenology and find the right parameter sets to which we apply the
computer aided estimates and prove our rigorous results. In Sec. IV,
we introduce the theoretical background of the rigorous approxi-
mation of the Lyapunov exponent and give bounds for Lyapunov
exponents. In Sec. V, the algorithmic properties of rigorous compu-
tation and the final result are shown, and we compare the Lyapunov
exponent obtained by the rigorous computation and those obtained
by common numerical experiments. In Sec. VI, we give a summary
and an overview.

II. THE LYAPUNOV EXPONENT

A. Lyapunov exponents of random dynamical systems

A one-dimensional random dynamical system with additive
noise is given by

xn+1 = T(xn) + ξn, (1)

where T : R → R is a piecewise C1 non-singular map, i.e., a
map whose associated pushforward preserves absolutely continu-
ous measures. The additive noise term (ξi)i∈Z is defined as a series
of independent and identically distributed random variables with a
probability distribution ρθ having bounded variation and supported
in the interval [− θ

2
, θ

2
] characterizing the range of the fluctuation.

Let ω := (ξi)i∈Z be a noise realization. The Lyapunov exponent
associated to the point x0 ∈ R, and the realization ω of our random
dynamics is defined by

λθ (ω, x0) = lim
N→∞

1

N

N−1
∑

i=0

log |T′(xi)|, (2)

where xi is defined by the random dynamical system (1). The Lya-
punov exponent of random dynamical systems characterizes the
average expansion rate of orbits as is the case with determinis-
tic dynamical systems. When the random dynamical system has a
stationary measure µ which is ergodic, the Lyapunov exponent is
µ-almost surely a constant,

λθ (ω, x0) = λθ . (3)

B. Transfer operator and stationary distribution for

random dynamical systems

For the random map (1), we consider the case of a fixed noise
ξn = ξ ; for a fixed noise, we have a deterministic transformation,

Tξ = T(x) + ξ . (4)

For such a transformation, the transfer operator (sometimes called
the push-forward operator when acting on measures) Lξ ,θ : L1 → L1

for Tξ is defined by the equation
∫

A

(Lξ ,θ f)(x)dx =

∫

T−1
ξ

(A)

f(x)dx, (5)

where f ∈ L1 and A is a Borel measurable set. Statistical properties
of the random map (1) can be investigated by studying the annealed
transfer operator Lθ : L1 → L1, which is the averaged transfer oper-
ator Lξ ,θ over ξ with the distribution ρθ , defined by

Lθ f(A) := 〈Lξ ,θ f(A)〉ξ =

∫ ∫

A

(Lξ ,θ f)(x)dx ρθ (ξ)dξ , (6)

remark that the inner integral depends on ξ .
A fixed point fθ (x) of the annealed transfer operator Lθ

satisfying

Lθ fθ (x) = fθ (x) (7)

is called a stationary distribution of the random map (1) and char-
acterizes (some of) the statistical properties of an ergodic random
dynamical system.3 Using a stationary distribution fθ , we can define
the spatially averaged Lyapunov exponent,

〈λθ 〉 =

∫

R

log |T′(x)|fθ (x)dx. (8)

Thus, when the random dynamical system is ergodic with respect to
the measure µθ whose density is fθ (x), we have

λθ = 〈λθ 〉 (9)

for µθ -almost all x0 and for almost every realization of the noise ω.3

We herein rigorously compute the spatially averaged Lyapunov
exponent 〈λθ 〉. Since the convergence to the equilibrium of the
system and hence its ergodicity are also proved by our rigorous com-
putation, we can evaluate λθ and show the existence of multiple
noise-induced transitions.

III. NOISE-INDUCED TRANSITIONS IN THE

LASOTA–MACKEY MAP

In this section, we introduce the class of systems we are going
to investigate. We also show the results of several non-rigorous
numerical experiments. Besides showing the general behavior of
noise-induced phenomena occurring in Lasota–Mackey maps, the
result of the nonrigorous experiments we show will help us to find
the right parameters for which multiple transitions occur, and then
apply to these examples our theory and computer aided estimates,
proving rigorously the existence of multiple transitions.

A. Multiple noise-induced multiple transitions in the

Lasota–Mackey map

The Lasota–Mackey map is a class of one-dimensional random
map with the deterministic term given by

T(x) = ax + d −
1

1 + e−β(ax+d−1)
+ b, (10)

where a, d, β > 0 and b ∈ R,1 as depicted in Fig. 1. The stochastic
term ξn, i.i.d sampled from a uniform distribution ρθ (x) = 1[− θ

2 , θ2 ].
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FIG. 1. The deterministic Lasota–Mackey map with the parameters a = 1/2,
β = 130, d = 17/30, b = 0.0018 (red) and the identity map y = x (black).

When θ = 0 and β → ∞, the deterministic term is given as xn+1

= ax + d − 1 + b, and when defined in a circle, is a classical model
of neurons, so-called Nagumo map.13,16 Hereafter, the parameters
are fixed as a = 1/2, d = 17/30, and β = 130.13 The parameters b
and θ are left as control parameters. In this section, we show a qual-
itative description of the behavior of the Lyapunov exponent of the
map when varying θ and b.

To get a first intuitive understanding of the behavior of the Lya-
punov exponent, let us discuss the behavior of the Lasota–Mackey
map in the large noise limit. The large noise limit is a limit in
which the noise amplitude is sufficiently large to smear out the
whole dynamical structure. In this limit, (i) the stationary distribu-
tion approaches to the probability distribution of the noise itself, and
(ii) the trajectories almost always stay a region with |x| � 1 (see
Fig. 1). With (i) and (ii), we have the following:

1. Spatially averaged Lyapunov exponent

〈λ∞〉 = lim
θ→∞

∫ θ
2

− θ
2

log |T′(x)|
1

θ
dx ' log a < 0. (11)

2. Temporally averaged Lyapunov exponent

λ∞ = lim
N→∞

1

N

N
∑

i=0

log |T′(xi)| ' log a < 0. (12)

Therefore, starting with a Lasota–Mackey map with a positive
Lyapunov exponent, adding a very large noise, shows a negative
Lyapunov exponent.

However, this observation does not enable us to understand
noise-induced phenomena in realistic systems. As a matter of fact
in the random systems we consider, we observe multiple noise-
induced transitions when the additive noise is small, which cannot
be discussed by the large noise limit.

Next, we numerically (non-rigorously) compute Lyapunov
exponents as a function of b and θ and have a global view in a

diagram of Lyapunov exponents. In nonlinear physics, the finite-
time Lyapunov exponent is often introduced as an approximation
of the Lyapunov exponent, which is a function of a finite trajectory
of length N on the attractor. The concept of attractor in random
dynamical systems is introduced similarly to those in the determin-
istic dynamical systems, which is called random attractor A (ω).2,4,11

The finite-time Lyapunov exponent on a random attractor A (ω) in
a random dynamical system is given by

λθ (N, ω, x0) =
1

N

N−1
∑

i=0

log |T′(xi)| (x0 ∈ A (ω)). (13)

The temporary averaged Lyapunov exponent can be given by a long-
run limit of the finite-time Lyapunov exponent.

Figure 2 (top) shows the bifurcation diagram of the deter-
ministic Lasota–Mackey map fixing θ = 0 and changing the shift
parameter b. The finite-time Lyapunov exponents as a function of
(b, θ) are shown in the heatmap diagram in Fig. 2 (bottom). The
warm color regions correspond to positive Lyapunov exponents and
the cold color regions to negative Lyapunov exponents; one can see
that the warm color regions lean to the left, and multiple transitions
are observed in a broad range of the parameters b ∈ [−0.02, 0.02].

When the parameter b = 0.0018, we observe multiple transi-
tions from chaos to order, and to chaos, and to order by increasing
the noise amplitude θ (Fig. 3).

In Sec. IV, we will prove that these transitions actually occur by
our rigorous computer aided estimates based on the approximation
of the transfer operators.

FIG. 2. (Top) The bifurcation diagram of the deterministic Lasota–Mackey
map by changing b ∈ [−0.02, 0.02]: The parameters are set to a = 1/2,
d = 17/30,β = 130, and θ = 0. (Bottom) The phase diagram of the
Lasota–Mackey map: The parameters are set to a = 1/2, d = 17/30, and
β = 130. The Lyapunov exponent is approximated by finite-time Lyapunov expo-
nent (13) in b ∈ [−0.02, 0.02] and θ ∈ [0, 0.13]. The colors correspond to the
value of Lyapunov exponents. The black line on b = 0.0018 corresponds to the
example of the parameter where multiple transitions occur. Numerical compu-
tations are done with 106 initial conditions for each (b, θ), and the finite-time
Lyapunov exponent is averaged over 105 time steps after∼106 steps of transient
dynamics.
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FIG. 3. The finite-time Lyapunov exponents averaged over 105 time steps after
∼106 step transient dynamics.

B. Regularization of stationary distributions by

additive noise

Transfer operators and stationary distributions of determin-
istic/random dynamical systems are typically approximated by the
Ulam method (see Appendix B). Given a coarse-grained grid which
has K intervals with size δ = 1/K, we have a K × K probability
matrix Lδ,θ as a Ulam discretized annealed transfer operator Lθ ,
and a K-dimensional probability vector fδ,θ as an Ulam discretized
stationary distribution fθ .

It is difficult to obtain the rigorous error bound ‖fθ − fδ,θ‖

for deterministic dynamical systems and, in particular, for our

FIG. 4. Non-rigorously approximated stationary distributions of the
Lasota–Mackey maps (a = 1/2, d = 17/30, β = 130, b = 0.0018) with
θ = 0 (left) and with θ = 0.02 (right). The stationary distribution is approximated
by a histogram of finite trajectory with long double precision, the bin size of the
histogram is 3.0 × 10−3 and the length of the trajectory is 107, of which 90%
was truncated as transients.

Lasota–Mackey maps because the associated transfer operators
might have a complicated behavior, which could be unstable to per-
turbations as the finite-dimensional approximations we need for the
computation (see Refs. 6, 7, 9, 12, 10, and 17 as tractable cases).
Furthermore, these systems may have invariant measures which are
singular or the associated densities may have many sharp peaks [see
Fig. 4 (left)] and be supported on complicated attractors. On the
contrary, it is typically easier to obtain the rigorous error bound
‖fθ − fδ,θ‖ for dynamical systems with additive noise, because the
additive noise regularizes the behavior of the associated transfer
operator. In our case indeed, due to the bounded variation noise
kernel ρθ , the associated transfer operator is regularizing from L1

to bounded variation (see Ref. 8), and hence it is a compact Markov
operator on L1. The smoothing effect induced by noise even at the
level of stationary densities is illustrated in Fig. 4 (right).

In Sec. IV, we approximate the stationary distribution fθ (x)
with rigorous error bound, by using the Ulam method.

IV. RIGOROUS APPROXIMATION OF LYAPUNOV

EXPONENTS

A. Approximation of the stationary distribution

In Ref. 8, the algorithm is given that bounds the error in
approximating the stationary distribution of random dynamical sys-
tem (1) with the Ulam method (see Appendix B). The rigorous com-
putation algorithm is established for a random dynamical system
on a finite interval [0, 1]. Although dynamics of the Lasota–Mackey
map is defined on the real line, it can be reduced to whose in a
bounded interval. In fact, the Lasota–Mackey maps have a com-
pact attracting set. Let us consider the Lasota–Mackey map (10)
with coefficients a = 1/2, d = 17/30, β = 130, and b = 0.0018
and recall that |ξn| ≤ θ . Let s1, s2 (s1 < s2) be the critical points of
T. Let us consider the interval I = [T(s2) − θ/2, T(s1) + θ/2]. Let
x0 be an initial condition and ξn be some realization of the noise.
Since a < 1 after a finite number n of iterates we get xn ∈ I and then
eventually xi ∈ I for each i ≥ n. The interval I includes an attracting
set for every random orbit of the system. By this, any initial distri-
bution of probability will be sent to a distribution supported in I.
I will hence contain the support of the stationary measure of the
system. We can then consider the random dynamics restricted to
I and apply our techniques to compute the stationary measure and
the associated Lyapunov exponents.

We explain here the general idea used in Galatolo et al.,8 allow-
ing the possibility of finding explicit error bounds between the
stationary distribution fθ of the random dynamical system (1) and
the stationary measure fδ,θ of the Ulam discretization of the system.
We expose here a kind of simplified version of the construction used
in the paper,8 with the aim of showing the aspects of the system
having the greatest influence on the speed and the precision of our
explicit estimates: the speed of mixing of the system, which deter-
mines the number of iteration required to certify the bounds, and
the size of the noise, which is responsible for the regularization effect
of the transfer operator.

Recall that the Lθ , Lδ,θ are, respectively, the annealed trans-
fer operator and the Ulam discretization of the random dynamical
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system (1). Let V ⊆ L1 be the set of zero average densities

V :=

{

f ∈ L1 s.t.

∫

fdx = 0

}

. (14)

Let vi := ‖Li
δ,θ |V‖ be the L1 norm of the approximating transfer

operator restricted to V. Suppose that there exists an integer n such
that

vn < α < 1 (15)

(hence the transfer operator contracts V, implying convergence to
equilibrium) and for 0 ≤ i < n,

vi < Ci ≤ 1. (16)

Then,

‖fθ − fδ,θ‖L1 ≤
1 + 2

∑n−1
i=0 Ci

2(1 − α)
δVar(ρθ ), (17)

where Var(·) is total variation norm (see Appendix A). For the proof
of this estimate, see Ref. 8 or Appendix C. We point out that in Ref. 8
and in the code used in the present work, a more complicated and
sharp bound is used but the main concepts involved are the same as
we can find in this simplified version, which will be sufficient for the
purposes of this section.

For this bound, we need to compute Ci, α rigorously (for the
way to compute, see Ref. 9).

For our system, the probability density function ρθ is a uniform
distribution on [θ/2, θ/2], thus

Var(ρθ ) =
2

θ
, (18)

and we have

‖fθ − fδ,θ‖L1 ≤
1 + 2

∑n−1
i=0 Ci

2(1 − α)

2δ

θ
:= E1. (19)

From this bound, we can see a small noise size θ requires a small
partition size δ to have a good approximation. Furthermore, if the
system is fast mixing, we will get a small value for n also improving
the error bound. We remark that the stronger bound implemented
in Ref. 8 and in the code used in this work for the computation
of the stationary distribution is mostly proportional to δ2Var(ρθ ),
improving the quality of the approximations.

B. Approximation of Lyapunov exponents

Based on the rigorous error bound of stationary distribution
fδ,θ (x), we obtain the rigorous error bound of the Lyapunov expo-
nent. For different systems, different bounds are required to obtain
the approximation error of the Lyapunov exponent (8), which is
defined as

∫

h(x)f(x)dx, where h(x) = log T′(x). This is because the
observable function h diverges at the critical point, and we need to
estimate differently near the critical points and in other parts of the
system. Note that Lasota–Mackey maps (10) have two critical points
s1, s2 (i.e., for i = 1, 2, T′(si) = 0 and s1 < s2).

Let X be a space that includes the support of stationary dis-
tribution fθ , we define the approximated Lyapunov exponent of

Lasota–Mackey map as

〈λδ,θ 〉 =

∫

X\Bε

h(x)fδ,θ (x)dx, (20)

where Bε is the ε-neighborhoods of the two critical points s1 and s2,

Bε = {[s1 − ε, s1 + ε], [s2 − ε, s2 + ε]} (ε > 0). (21)

Applying the L1 norm instead of L∞ in Bε , we have

∣

∣〈λθ 〉 − 〈λδ,θ 〉
∣

∣

=

∣

∣

∣

∣

∫

X

h(x)fθ (x)dx −

∫

X\Bε

h(x)fδ,θ (x)dx

∣

∣

∣

∣

≤ ‖h(x)‖L1(Bε) · ‖fθ (x)‖L∞(Bε) + c‖fθ (x) − fδ,θ (x)‖L1 , (22)

where c is constant value given as

c = log

∣

∣

∣

∣

a

(

1 +
β

4

)

T′(s1 − ε)

∣

∣

∣

∣

. (23)

Note that the bound of ‖fθ (x) − fδ,θ (x)‖L1 is given in Sec. IV A as
(19). We give the bound of ‖h(x)‖L1(Bε) as

‖h(x)‖L1(Bε)

=

∫ s1

s1−ε

|h(x)|dx +

∫ s1+ε

s1

|h(x)|dx

+

∫ s2

s2−ε

|h(x)|dx +

∫ s2+ε

s2

|h(x)|dx

< m1(s1 − ε) + M1(s1 + ε) + m2(s2 − ε) + M2(s2 + ε)

:= E2, (24)

where

Mi(x) = |η(x) − η(si)|
[

log |aσ ′′(η(x))(η(x) − η(si))| − 1
]

,

mi(x) = |η(x) − η(si)|
[

log |aσ ′′(η(si))(η(x) − η(si))| − 1
]

.

Also, we give the bound of ‖fθ (x)‖L∞(Bε) as

‖fθ‖L∞ = ‖Lθ fθ‖L∞(Bε)

≤ ‖Lθ fδ,θ‖L∞(Bε) + ‖Lθ (fθ − fδ,θ )‖L∞(Bε)

≤ ‖fδ,θ‖L∞(Bε) + θ−1‖(fθ − fδ,θ )‖L1

≤ E3 + θ−1E1, (25)

where ‖fδ,θ‖L∞(Bε) := E3. Therefore, we have

∣

∣〈λθ 〉 − 〈λδ,θ 〉
∣

∣ < E2(E3 + θ−1E1) + cE1 := E. (26)

In sum, given rigorously computed fδ,θ , α, Ci (i = 1, . . . , n), n
with (16)–(19), we obtain the certificated interval of the Lyapunov
exponent,

〈λθ 〉 ∈ (〈λδ,θ 〉 − E, 〈λδ,θ 〉 + E). (27)
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V. EXISTENCE OF MULTIPLE NOISE-INDUCED

TRANSITIONS IN LASOTA–MACKEY MAPS

A. Rigorous computation based on stationary

distribution

We apply the computational library based on the rigorous esti-
mation introduced in Sec. IV for our Lasota–Mackey map. The
library written in Python, Sage, and C++ can be found at the library
site (see the data availability statement). The main algorithm works
as follows:

1. Given the partition size δ, compute Lδ,θ and fδ,θ .
2. Find a small n and compute α, (Ci)i=1...n−1 satisfying the condi-

tion vn ≤ α < 1, vi < Ci ≤ 1 (i = 0 . . . n − 1).
3. Compute the rigorous error bound E1 of the approximated

stationary distribution ‖fθ − fδ,θ‖L1 .
4. Compute the approximated Lyapunov exponent 〈λδ,θ 〉 and

the rigorous error bound E. 〈λθ 〉 is in the interval (〈λδ,θ 〉

− E, 〈λδ,θ 〉 + E).

In step 2, we need to compute a high-dimensional matrix
{Li

δ,θ }i≤n
, which mainly contributes to the computational time

O(nδ−3D), where D is the system dimension. When the contraction
of approximated transfer operator Ln

δ,θ is certificated, the contrac-

tion of original annealed transfer operator with n + 1 iteration Ln+1
θ

is certificated (see Sec. IV of Ref. 8). In other words, we can certifi-
cate the mixing property of the system by a secondary result of the
rigorous computation.

The fact that the system is contracting zero average measures
and hence mixing by the results explained in Sec. 7 of Ref. 8 implies
that the Lyapunov exponent is Hölder continuous as a function of θ

(θ > θ0). If the system is mixing with additive noise with the ampli-
tude θ0, the system with a larger fluctuation θ > θ0 is also mixing.
These facts support the existence of the zero-crossing points of the
Lyapunov exponents when the noise-induced transition exists.

The final result of our rigorous approximation of the certifi-
cated interval of the Lyapunov exponents is shown in Table I and
Fig. 5. We give the partition size and the noise amplitude

δ = 2−20, θ ∈ [0.01, 0.12], (28)

with b = 0.0018. The algorithm automatically finds the iteration
number n and the contraction rate α to output the L1 error
E′ ' 10−3. Note that, in the implemented algorithm, we adopt the
bound not as E in Eq. (26), but as a stronger bound E′ (see Sec. 3.3
in Ref. 8). The stronger bounds are given as E′ ∝ δ2/θ , while the
standard bound as E ∝ δ/θ .

In Table I, the white regions indicate that the upper end of the
interval is negative, and the gray regions that the lower end of the
interval are positive. We also confirm that system (10) is mixing at
θ = 0.01. This implies that equality (9) holds for the entire range of
the parameters.

From the above, the following theorem holds:
Theorem 1: The Lasota–Mackey map with the parame-

ters a = 1/2, b = 0.0018, c = 17/30, β = 130, and ρθ (x) = 1
θ

(x ∈ [−θ/2, θ/2]) shows multiple noise-induced transitions. The sign
of the Lyapunov exponent changes at least three times in the interval
θ ∈ [0.01, 0.12].

FIG. 5. The rigorously computed interval including the Lyapunov exponents:
The certificated intervals are given by red and blue arrows. The precise value of
the certificated interval is given in Table I. The parameters are set to a = 1/2,
d = 17/30, b = 0.0018,β = 130, and 16 sampled θ ∈ [0.7250 × 10−2,
9.000 × 10−2]. The black line is the non-rigorous approximation given by the
finite-time Lyapunov exponents as a reference. The certified bounds hold at only
these specific values of θ .

The mixing property also implies that the Lyapunov exponent
is Hölder continuous in the entire range of the parameters. Because
we have at least three changes in the sign of the Lyapunov expo-
nents, there exist at least three zero-crossing points of the Lyapunov
exponents in the interval θ ∈ [0.01, 0.12].

TABLE I. The certificated interval of the Lyapunov exponent as a function of noise

amplitude. It is certificated that the sign of the Lyapunov exponent is negative in

gray regions, and the sign of the Lyapunov exponent is positive in white regions. The

certified bounds hold at only these specific values of θ .

θ δ n α (〈λδ,θ 〉 − E′, 〈λδ,θ 〉 + E′)

1.000 × 10−2 2−20 48 0.22 [8.727, 9.158] × 10−2

1.250 × 10−2 2−20 48 0.17 [6.490, 6.816] × 10−2

1.500 × 10−2 2−20 45 0.14 [4.783, 5.049] × 10−2

2.000 × 10−2 2−20 48 0.1 [2.437, 2.637] × 10−2

2.450 × 10−2 2−20 46 0.091 [0.915, 1.087] × 10−2

3.000 × 10−2 2−20 45 0.07 [−3.129, −1.610] × 10−3

3.500 × 10−2 2−20 46 0.057 [−2.595, −1.352] × 10−3

4.000 × 10−2 2−20 42 0.056 [5.036, 6.109] × 10−3

5.000 × 10−2 2−20 43 0.032 [2.276, 2.362] × 10−2

6.000 × 10−2 2−20 36 0.032 [3.385, 3.460] × 10−2

7.000 × 10−2 2−20 39 0.018 [3.583, 3.651] × 10−2

8.000 × 10−2 2−20 35 0.017 [2.951, 3.015] × 10−2

9.000 × 10−2 2−20 33 0.014 [1.533, 1.594] × 10−2

1.000 × 10−1 2−20 32 0.011 [−6.198, −5.602] × 10−3

1.050 × 10−1 2−20 31 0.011 [−1.885, −1.826] × 10−2

1.200 × 10−1 2−20 29 0.0087 [−6.001, −5.943] × 10−2
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B. Non-rigorous computation

In this section, we examine the reliability of the non-rigorously
computed temporally averaged Lyapunov exponents, comparing it
with our rigorous estimates of the spatially averaged Lyapunov
exponents.

To do that, we compute the distributions of the finite-time Lya-
punov exponent (13) for 20 000 different finite sequences of ω. As a
heuristic comparison method, we adopt the three-sigma rule18 and
check whether the sample means ± three times of standard deviation
includes the certificated interval.

Figure 6 exhibits the distribution g(λθ (N, ω, x0)) of the finite-
time Lyapunov exponents λθ (N, ω, x0) and the certificated interval
of the Lyapunov exponent [〈λδ,θ 〉 − E′, 〈λδ,θ 〉 + E′] with the noise
amplitude θ = 0.02, 0.08. Each finite-time Lyapunov exponent is
given by the trajectories of length N = 106 (green), 107 (blue),
and 108 (red), computed by the long double precision, and the
three-sigma interval is computed, which is an interval of sample
means ± three times of standard deviation. When N = 106, for both

(a)

(b)

FIG. 6. The certificated interval of Lyapunov exponents (gray region) and the
histogram of finite-time Lyapunov exponent for the noise amplitude θ = 0.02 (top)
and θ = 0.08 (bottom). Each finite-time Lyapunov exponent is given by the time
average of the iterationN = 106 (green),N = 107 (blue),N = 108 (red), after 9N
steps of the transient dynamics. When N = 108, both of the three-sigma intervals
are included by the certificated interval.

θ = 0.02 and 0.08, the three-sigma interval of finite-time Lyapunov
exponent need not be included by the certificated interval. When
N = 107, the three-sigma interval with θ = 0.02 is included by the
certificated interval, while those with θ = 0.08 does not. When
N = 108, both of the three-sigma intervals are included by the cer-
tificated interval. Thus, in the Lasota–Mackey maps, it is suggested
that the finite-time Lyapunov exponents given by the finite length
time average well-approximate the true Lyapunov exponent for a
long run N ∼ 108.

Our result then shows the reliability of the approximations of
the Lyapunov exponents by the finite-time Lyapunov exponents.

VI. CONCLUSION

We prove that a Lasota–Mackey map shows multiple noise-
induced transitions and that the sign of Lyapunov exponent in the
map changes at least three times, by a rigorous computation of the
certificated intervals.

The rigorous computation algorithm used here is known to be
effective for a wide class of random dynamical systems with additive
noise. However, we need to be cautious about whether the algorithm
ends in a realistic computational time. The computational complex-
ity of the rigorous computation is O(nδ−3D), where δ is the grid
size of the Ulam approximation, n is the mixing time of the sys-
tem, and D is the system dimension. The width of the certified error
interval is grossly proportional to nθ/δ. Thus, in order to finish the
rigorous computation in a realistic time scale, the random dynam-
ical system of interest must be (1) not with too small noise, (2)
with a short mixing time, and (3) in low-dimensional. In this paper,
we focus only on the Lyapunov exponent as an indicator of noise-
induced transition. In random dynamical systems, the sign of the
Lyapunov exponent often characterizes the average stability of the
random pullback attractors. The changes in the sign of the Lyapunov
exponent do not always imply bifurcations in random dynamical
systems. The dynamics may show chaotic behavior even if the Lya-
punov exponent is negative.19 In some cases, the Lasota–Mackey
map shows a stronger orderly nature than the presented case, which
indicates slow oscillatory relaxation of the density to a stationary
state, called noise-induced statistical periodicity.20 It is difficult to
apply our rigorous computation method to the Lasota–Mackey map
showing statistical periodicity due to weak mixing.

We also compare the results in rigorous computation and non-
rigorous computation and confirm that the non-rigorous method
approximates the Lyapunov exponents of the Lasota–Mackey map
with particular parameters. By using our rigorous computation
method, we may estimate the reliability of a variety of other non-
rigorous approximation methods. In sum, our approach is expected
to work for validating statistical properties of a broad class of
nonlinear stochastic phenomena.

ACKNOWLEDGMENTS

The authors thank M. Monge for fruitful discussions and advice
during the implementation of this project. T.C. was supported by
the Ministry of Education, Culture, Sports, Science and Technology
through Program for Leading Graduate Schools (Hokkaido Uni-
versity “Ambitious Leader’s Program”). Y.S. is supported by the

Chaos 32, 013117 (2022); doi: 10.1063/5.0070198 32, 013117-7

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

Grant in Aid for Scientific Research (C) No. 18K03441 and (B)
No. 21H01002, JSPS, Japan, and the external fellowship of Lon-
don Mathematical Laboratory, UK. S.G. was partially supported by
the research project PRIN Project No. 2017S35EHN “Regular and
stochastic behavior in dynamical systems” of the Italian Ministry
of Education and Research (MIUR). I.N. was partially supported
by CNPq, UFRJ, and CAPES (through the programs PROEX and
the CAPES-STINT project “Contemporary topics in nonuniformly
hyperbolic dynamics”).

AUTHOR DECLARATIONS

Conflict of Interest

The authors have no conflicts to disclose.

DATA AVAILABILITY

The computational libraries for the rigorous estimation of Lya-
punov exponents that support the findings of this study are openly
available on the web site at https://github.com/orkolorko/compinvm
eas-python-release-noise/tree/main, Ref. 22. Lecture videos and
associated Jupyter notebooks provided in the summer school on
computational ergodic theory at Hokkaido University are openly
available on the web site at https://sites.google.com/view/hsi-comp-
ergo-theo-2021/, Ref. 23.

APPENDIX A: THE VARIATION OF A REAL FUNCTION

Let f be a function on the interval X ∈ R; the variation of f (is
denoted by VarX(f)) is defined as follows:

VarX(f) := sup
{x0<x1<···<xk∈X}

k−1
∑

i=0

| f(xi+1) − f(xi)|, (A1)

where the supremum is taken over all possible partitions of any size
k. If X is a pairwise disjoint interval, the variation is defined as sum
of variation at each interval. It is known that if f is smooth VarX(f)
= ‖f ′‖L1 .14

For example, consider the probability density function ρθ of
Uniform distribution on [θ/2, θ/2]. Since ρθ varies the value by 1/θ
at −θ/2 and θ/2, that variation is given as Var(ρθ ) = 2/θ .

APPENDIX B: THE ULAM METHOD

The Ulam method enables us to approximate the transfer
operator of dynamics as finite-dimensional matrix. Consider the
nonsingular dynamical system on X; then, the transfer operator of
the system can be defined as L : L1 → L1 . We define the Ulam
discretized operator Lδ with associated discretizing operator πδ :
L1 → L1 as

πδ(g) := E(g|Fδ), (B1)

Lδ := πδLπδ , (B2)

where Fδ is σ -algebra associated with the partition of size δ.
We consider to apply the Ulam method for the dynamical

systems perturbed by additive noise. Let ρθ be probability den-
sity function of considering additive noise, where θ is the control

fluctuation of noise. We have (annealed) transfer operator14 as

Lθ = NθL = ρθ ∗ L. (B3)

The Ulam discretization of annealed transfer operator is defined as

Lδ,θ := πδNθπδLπδ , (B4)

and we observed that

Ln
δ,θ := (πδNθπδL)nπδ , (B5)

taking into account that π 2
δ = πδ .

APPENDIX C: THE BOUND OF THE L1 ERROR

We give the brief explanation about the error bounds (17) on
the computation of the stationary distribution shown in Sec. IV A.

We consider the one-dimensional dynamical system with addi-
tive noise (1) and assume that the probability distribution ρθ of
the noise is in the class of bounded variation, where θ control the
fluctuation of noise.

Let Lθ , Lδ,θ be annealed transfer operator and its Ulam approx-
imation, and let fθ , fδ,θ be stationary distributions respect to Lθ , Lδ,θ .
Suppose n is an integer such that vn < 1. Then,

‖fδ,θ − fθ‖L1 = ‖Ln
δ,θ fδ,θ − Ln

θ fθ‖L1

= ‖Ln
δ,θ fδ,θ − Ln

δ,θ fθ + Ln
δ,θ fθ − Ln

θ fθ‖L1

≤ ‖Ln
δ,θ (fδ,θ − fθ )‖L1 + ‖(Ln

δ,θ − Ln
θ )fθ‖L1 .

Since fδ,θ − fθ ∈ V, and

||Ln
δ,θ |V||L1→L1 ≤ α, < 1,

then ‖(Ln
δ,θ (fδ,θ − fθ )‖L1 ≤ α‖fδ,θ − fθ‖L1 and we have the following:

‖fθ − fδ,θ‖L1 <
1

1 − α
‖(Lδ,θ − Lθ )

nfθ‖L1 . (C1)

Lδ,θ − Lθ can be decomposed as follows:

Lδ,θ − Lθ = πδNθπδLπδ − NθL

= πδNθπδLπδ − πδNθπδL

+ πδNθπδL − πδNθL

+ πδNθL − NθL. (C2)

By recursively decomposing Ln
δ,θ − Ln

θ , and rearranging this, we can
obtain

‖(Ln
δ,θ − Ln

θ )fθ‖L1 ≤ ‖(πδ − 1)fθ‖L1 +

N−1
∑

i=0

‖Lδ,θ |
i
V‖L1→L1

×
(

‖Nθ (πδ − 1)Lfθ‖L1 + ‖NθπδL(πδ − 1)fθ‖L1

)

.

(C3)

For the bound ‖fθ − fδ,θ‖L1 , we need to estimate the bounds of those
three objects,

‖(πδ − 1)fθ‖L1 , ‖Nθ (πδ − 1)Lfθ‖L1 , ‖NθπδL(πδ − 1)fθ‖L1 . (C4)

Those objects are made up of operators πδ , Nθ , L and invariant mea-
sure fθ . Note that ‖fθ‖L1 = 1, ‖L‖L1→L1 ≤ 1, ‖πθ‖L1→L1 ≤ 1. More-
over, by using total variation norm, we can obtain following bounds
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(for proof, see Proposition 23 of Ref. 8):

‖Nθ (πδ − 1)‖L1→L1 ≤
1

2
δVar(ρθ ), (C5)

‖(πδ − 1)Nθ‖L1→L1 ≤
1

2
δVar(ρθ ). (C6)

From the above, these two bounds and (C2) and (C3) lead to the
initial bound of the L1 error

‖fθ − fδ,θ‖L1 ≤
1 + 2

∑n−1
i=1 Ci

2(1 − α)
δVar(ρθ ), (C7)

where 0 ≤ Ci ≤ 1 are such that vi < Ci ≤ 1.
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