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Abstract
We study the problem of the rigorous computation of the stationary measure
and of the rate of convergence to equilibrium of an iterated function system
described by a stochastic mixture of two or more dynamical systems that are
either all uniformly expanding on the interval, either all contracting. In the
expanding case, the associated transfer operators satisfy a Lasota–Yorke
inequality, we show how to compute a rigorous approximations of the sta-
tionary measure in the L1 norm and an estimate for the rate of convergence.
The rigorous computation requires a computer-aided proof of the contraction
of the transfer operators for the maps, and we show that this property pro-
pagates to the transfer operators of the IFS. In the contracting case we perform
a rigorous approximation of the stationary measure in the Wasserstein–Kan-
torovich distance and rate of convergence, using the same functional analytic
approach. We show that a finite computation can produce a realistic compu-
tation of all contraction rates for the whole parameter space. We conclude with
a description of the implementation and numerical experiments.
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1. Introduction

The reliable simulation and forecasting of the statistical properties of a chaotic dynamical
model is a difficult and important task. Our investigation is focused towards the possibility of
analyzing a dynamical system in an automated way, forecasting long time statistical features
and, more in general, any rigorous information that can be useful for computer-aided proofs.
Here we consider the rigorous approximation of the stationary measure of random dynamical
systems and its speed of convergence to equilibrium. By rigorous approximation we mean
that the result of the computation is mathematically certified, up to an explicitly given error.

By iterated function system (IFS) we mean the datum of a space X and a finite collection
of transformations T X X:i for Îi I , plus a set of positive parameters (probabilities) pi for
Îi I , summing up to 1. Iteratively, one of the maps Ti is applied on the set X, chosen with

probability pi independently of the previous steps.
In this article we study the problem of computing effectively, with a rigorous bound on

the error, the stationary (invariant) measure of such an IFS and its rate of convergence to
equilibrium. In the literature the problem of computation of the stationary measure for such
systems was considered (see e.g. [Bla01, Fro99, Obe05, Swi13]) proving the convergence of
the approximating algorithms to the correct estimation, and sometime giving some more
information on the behavior of the approximation error. In particular we remark that in
[Obe05] asymptotic estimations on the behavior of the approximation error are given whitout
an explicit estimation for all the constants involved, while in [Fro99] a way to get explicits
bounds on the approximation error for the stationary measure is given in the case of random
iteration of expanding maps of the circle. The paper [Bla01] consider the approximation of
the spectrum, which is a related concept, but to our knowledge no rigorous estimates for the
rate of convergence to equilibrium, as we describe in section 4, have been implemented in this
context before. We show how, with the help of some general tools that have been developed
in [GN14, GS15] for the study of transfer operators, we can implement an effective strategy to
perform these tasks on random systems and we apply it to nontrivial examples, presenting the
result of some rigorous computation, which gives rigorous information on the behavior of the
example being considered.

We will use a functional analytic approach, assuming the phase space X to be a metric
space equipped with the Borel σ-algebra (which we assume to be preserved by the inverse of
the Ti maps), and considering the transfer operator acting on Borel signed measures. For a
deterministic transformation T the corresponding transfer operator LT acting on probability
measures is defined as

( )( ) ( ( ))m m= -L A T A ,T
1

and when μ represents a probability distribution in X, then mLT represents the probability
distribution on X after one application of the transformation T.

Let us consider an IFS constructed with the maps Ti having transfer operators Li and
probabilities pi. The (annealed) transfer operator associated to such an IFS is defined by

( )å=
Î

L p L . 1
i I

i i

A fixed point for this transfer operator is called stationary measure for the IFS (see e.g.
[KL06, Pel84]). In this paper we decribe a way to find this fixed point and other features of
the underlying system by the properties of the operator L. Part of the information on L that
will be used comes from the qualitative properties of maps Ti, the probabilities pi and part will
be computed in a rigorous way by a suitable finite rank approximation of L.
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Let us introduce some notation: on a suitable space of measures , we will denote by V
(or just V when no confusion is possible) the set of zero-average measures, that is

{ } òm m= Î =V : 1d 0 .
X

When working on the interval, we denote by · BV the norm on measures defined as

 
 

òm f m= ¢
f fÎ =¥

sup d ,BV
C X: 11

the measures having finite norm are absolutely continuous with bounded variation density
(see [Liv04]).

We will abuse notation by extending the L1 norm to signed measures as

( ) ( ) ( ) m m m= ++ -X X 2L1

for a Hahn decomposition m m m= -+ - [Hal13], it coincides with the L1 norm of the
density when μ is absolutely continuous.

For simplicity we will consider two main cases: the case where the maps Ti are piecewise
expanding on the interval, and the case where Ti are contracting. More general cases can be
considered where the system is averagely expanding or contracting, (see [Bla01, Pel84]) and
the theory described here adapts to many of these cases, since our approach is based directly
on the properties of the transfer operator. The technique we use is based on the fact that both
in these two expanding and contracting cases, the operator L is a contraction in a suitable
sense on a suitable space.

• The first case we consider is the case of uniformly expanding transformations on the
interval; in such a case for a transformation T that is piecewise C2 we have a Lasota–
Yorke inequality with respect to the BV and L1 norms

( )     m l m m+L B 3BV BV L1

for constants l < 1 and B, which will be explicitly estimated. If the system has a unique
absolutely continuous invariant measure, then the iterates of L eventually contract VBV. It
is possible to find a suitable finite rank approximation of L satisfying the same property
(equation (3)) and having a unique fixed point which is close to the unique invariant
measure of L.

• The second case is the classic case of contracting maps, on a generic bounded subset of
n. In such a case the transfer operator is a contraction in the dual space of Lipschitz
function, that is, the space of measures with respect to the norm induced by Wasserstein–
Kantorovich distance.

All software developed in this work is publicly available as free software, as detailed in
section 7.

2. Summary

We present here an outline of the results.
In section 3 we work out the abstract strategy for the approximation of the stationary

measure, that can be used in both the expanding and contracting case.
In section 4 we show the general strategy for the estimation of the rate of convergence to

equilibrium for operators satisfying a Lasota–Yorke inequality.
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In section 5 we prove that contraction properties are preserved for nearby operators, and
that proving contraction on the operators Li is indeed enough to get a contraction of the IFS
for any choice of the probabilities. In practice the estimation of the contraction rate obtained
via the a priori formula can be quite pessimistic, but still, it can be used to have a usable
estimate, as it will be shown in an example.

In sections 6 and 8 we demonstrate the application of the above results in the case of the
L1 approximation of the invariant measure and contraction rate for IFS formed by uniformly
expanding transformations of the interval.

In section 9 we treat the more classical case of contracting transformations, approx-
imating the invariant measure in the Wasserstein–Kantorovich metric.

3. Strategy for rigorous approximation of the stationary measure

A stationary measure measure of the system is a fixed point of the transfer operator defined in
(1). To approximate it with a certified bound on the error we will use a quantitative fixed point
stability result used in [GN14] for the approximation of the invariant measure of deterministic
dynamical systems.

Let L be a transfer operator acting on a Banach space  of Borel measures and having
fixed point μ. We will use a finite-rank projection  p d : (describing a finite dimen-
sional approximation of measures), and denote by Lδ the approximated operator p pd dL , and
suppose md is its unique fixed point. Note that p pd dL is a stochastic matrix, so the biggest
eigenvalue is 1 and the corresponding eigenvector is a fixed point. We assume that L and Lδ
preserve the space of zero-average measures V .

While performing a computation, Lδ is computable with rigorous error and representable
in a suitable basis as a matrix of floating point numbers on computer, and md can be rigorously
approximated as a vector.

The following theorem can be used to compute rigorously the error of approximating μ

by md with respect to the norm · , it is essentially theorem 1 of [GN14].

Theorem 3.1. Suppose that

(1) ( ) m- < ¥dL L ,
(2) $N such that  

 
 a <d L 1N

V V ,
(3)    d L Ci

i for = ¼ -i N0, , 1.
Then

( ) ·     åm m m
a

- -
-d d

=

-

L L C
1

1 i

N

i
0

1

Proof. See [GN14]. ,

It easily follows
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Corollary 3.2. If dL is a contraction and    g <dL 1, then

( )    m m
g

m-
-

-d dL L
1

1
.

Remark 3.3. Both theorem 3.1 and corollary 3.2 are still valid when ·  is only defined on
the space of measures of zero average. This is very useful for working with Wasserstein–
Kantorovich distance, which only defines a norm on measures with zero average.

We can see, the invariant measure that is being approximated appears in theorem 3.1.
Indeed, item 1 in the theorem requires an estimation that depends on the a priori properties of
the invariant density μ and on the precision of the approximation of L by Lδ.

In practice, this can be done using a stronger norm ¢ that can be used to upper bound the
norm of the invariant measure μ, and such that   -d ¢L L can be made arbitrarily small,
so that

·        m m m- - ¢ ¢d d L L L L .

Such hypotheses are available when a Lasota–Yorke inequality involving ¢ and  is
satisfied.

Informally, the algorithm we are going to implement for the approximation of the sta-
tionary measures can be described as follows:

• Input the maps { }Ti , the probabilities { }pi , and the partition.
• For each map Ti compute the matrix Pi approximating dLi, .
• Compute Lδ as linear combination of the { }dLi, with the { }pi as coefficients.
• Compute the approximated fixed point md of Lδ up to some required approximation 1.
• Compute an estimation for  m m-dL L up to some error 2, as required by 1 of
theorem 3.1.

• Compute N such that item 2 of theorem 3.1 is verified, in practice we compute the
smallest N such that ( ∣ )   Pi V

N 1

2
(alternatively estimate such N via theorem 5.2).

• Estimate the Ci of 3 of theorem 3.1 (for  = L1 they are all 1, so this step can be
skipped).

• If all computations end successfully, output md and the error rigorously estimated via
theorem 3.1.

Items 2 and 3 of theorem 3.1 can be verified computationally, but their estimation is
neither trivial nor rapid, so we developed a strategy that permits to give a priori bound for
these items for any combination of the { }pi once we have estimated items 2 and 3 for some
specific choices of the parameters; section 5 explains this strategy.

We will illustrate the algorithm in particular cases in sections 8 and 10.

4. Recursive convergence to equilibrium estimation for maps satisfying a
Lasota–Yorke inequality

Beyond a rigorous approximation of a stationary measures of some example of IFS, it is
important to check if this stationary measure is unique, and obtain an estimate for the rate of
convergence to this measure. For the contracting IFS the uniqueness is well known (see
[Bar98] e.g.) and the rate of convergence is upper estimated by the smallest contraction rate of
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the maps involved (see section 10). For the piecewise expanding ones we apply a technique
[GS15], which works in general for systems safisfying a Lasota–Yorke inequality.

We will see how, the Lasota–Yorke inequality together with a suitable approximation of
the system by a finite dimensional one can be used to deduce finite time and asymptotic upper
bounds on the contraction of the zero average space. This method will be then applied to
expanding IFS, giving as a result the uniqueness of the absolutely continuous invariant
measure in the space defined by the strong norm appearing in the Lasota–Yorke inequality (as
all the other measure will converge to it) and an effective quantitative estimation for the rate
of convergence.

Consider two vector subspaces of the space of signed measures ÍB Bs w with
norms    s w.

Definition 4.1. Let ( )f n be a real sequence converging to zero. We say that the system
shows convergence to equilibrium with respect to norms w, s and speed f if " Îg Vs (the
space of zero-average functions with respect to  s, as defined in the introduction)

( ) ( ) ( )    fL g n g . 4n
w s0

Let us suppose that there are operators dL approximating L satisfying an approximation
inequality of the following type: there are constants C D, such that " Î "g B n, 0s :

( ) ( ) ( )      d- +dL L g C g nD g . 5n n
w s w

We note that if we consider piecewise expanding maps and the Ulam discretization this
inequality can be proved, and the coefficient explicitly estimated (see [GS15]). Now let us
consider as before the space V of zero total mass measures and let us suppose that there exists
δ and n1 such that

( ) ( )     l" Î dv V L v v, 6n
w w2

1

with l < 12 . Let us consider a starting measure: Îg V0 , let us denote =+g L g .i
n

i1
1 If the

system is as above, putting together the Lasota–Yorke inequality, (5) and (6)

( )
     

       



l

l d
+

+ +

⎧⎨⎩
L g A g B g

L g g C g n D g

,

.

n
i s

n
i s i w

n
i w i w i s i w

1

2 1

1 1

1

Compacting it in a vector notation

⪯ ( )
 
 

 
 

l
d d l+

+

+

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

g

g

A B

C n D

g

g
, 7i s

i w

n
i s

i w

1

1

1

1 2

1

where ⪯ indicates the component-wise  relation (both coordinates are less or equal). The
relation ⪯ can be used because the matrix is positive. The relation (7) and the assumptions
allow to explicitly estimate the contraction rate, by approximating the matrix and its

iterations. Let
l
d d l

=
+

⎛
⎝⎜

⎞
⎠⎟

A B

C n D
.

n
1

1 2

1

Consequently, we can bound  gi s and  gi w by a

sequence

⪯ ( )
 
 

 
 


⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

g

g

g

g
8i s

i w

i s

w

0

0
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which can be computed explicitly. This gives an explicit estimate on the speed of
convergence for the norms  s and  w at a given time.

Remark 4.2. We remark that, ln
1

1, l < 12 and the quantities dC, dn D1 have a chance to be
very small when δ is very small. This is not trivial because n1 depend on δ. However, in the
case of piecewise expanding maps, with dL being an Ulam-type approximation of L, as we
consider in this paper, dn D1 can be made sufficiently small (see [GS15], theorem 12).

A rigorous explicit estimation for the asymptotic behavior of (8) comes from eigenvalues
and eigenvectors of . Indeed, let the leading eigenvalue be denoted by r and a left
positive eigenvector (a, b), such that + =a b 1. For each pair of values (a, b) such that
+ =a b 1 we can define a norm

( )     = +g a g b g .a b s w,

We have that

( ) · ·( )     
 
 

= +
⎛
⎝⎜

⎞
⎠⎟Lg a Lg b Lg a b

g

g
,a b s w

s

w
,

then

( ) ( )    rL g g .kn
a b

k
a b, ,1

We do not expect the numbers and vectors computed in this way to be optimal, but they
give explicit upper estimates for the convergence to equilibrium of the system (see
section 8.1).

5. Uniform decay time estimations for the discretized operators

When considering discretized operators to apply theorem 3.1 a particularly time consuming
task is to compute its decay rates needed in item 2. In this section we show how this checking
can be done once and for all at the level of the maps Ti, obtaining an estimation which is valid
for every choice of the values of the parameters { }pi in the definition of the transfer operator
we consider (see equation (1)).

For this we take advantage of the contraction property of the (discretized) operator on the
zero-average subspace being preserved in a neighborhood. We will consider a general norm
· , that we will take to be L1 in the expanding case, and the norm induced by the Wasser-
stein–Kantorovich distance in the contracting case.

In this section we assume L to be the discretized transfer operator restricted to the space
of zero-average functions. Assume L̃ be a nearby (discretized) operator, in the sense that the
operator norm ˜ -L L is small. Let n be such that   <L 1 4n . Then
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Proposition 5.1. Assume   <Ln 1

4
, and that   <L Ci for each i. If L̃ is another operator

such that ˜ - <L L
n C

1

4 2 , and such that ˜  <L Ci for each i, then ˜  Ln 1

2
.

Proof. Indeed:

˜ ( ˜ )
˜

˜ ( ˜ )

˜ · ˜ ·

· ˜

   
   

   

       

   











å

å

= + -

+ -

+ -

+ -

+ -

=

-
- -

=

-
- -

L L L L

L L L

L L L L L

L L L L L

L nC L L

.

n n n n

n n n

n

i

n
i n i

n

i

n
i n i

n

0

1
1

0

1
1

2

1
2

,

The above proposition ensures that for each contracting operator, all nearby operators are
also contractions. The space describing all possibile probabilities is compact, and conse-
quently assuming all combinations of the operators Li to be contractions (taking a power if
necessary), we could use compactness to prove it in a finite number of steps for a sufficiently
fine grid of possibilities, each step granting the contraction in a neighborhood.

However, we have that in the IFS case all operators are convex combinations of con-
tractions (in a certain number of steps), and this information can be used at once to bound the
contraction time of a combination. We start working with the combination of two operators.
We remark that a combination of any finite number of operator can be seen as obtained taking
inductively a convex combination of two operators that are contractions, so it is possible to
use the theorem that follows to work with any finite number of operators.

Assume L0 and L1 to be operators on a Banach space, and for a sequence
( )w w w w= , ,..., k1 2 with { }w Î 0, 1i , denote =w

w w wL L L L... k1 2 . We also denote by ∣ ∣w its
length k, and by ∣ ∣w 0, ∣ ∣w 1 the number of occurrences of 0 or 1 in ω, respectively. Assume that

     w" < < <wL C L
C

L
C

,
1

2
,

1

2
.n n

0 1
0 1

for some >C 0 and n0, n1 big enough.

Theorem 5.2. Let [ ]Îp 0, 1 , then

( ( ) ) + - <pL p L1
1

2
M

0 1

for all M satisfying the lower bound

( )( )
 - +

- - - -
M N N

C
1

log 2

log 1
.

p p

2

1

2

n n0 1

for { }=N n nmax ,0 1 .

Proof. Let us expand the Mth power in all possible compositions of L0 and L1, indexed by
all words ω of length M:
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( ( ) ) ( )
∣ ∣

∣ ∣ ∣ ∣å= + - = -
w w

w w w

=
L pL p L p p L1 1 .M M

M
0 1

:

0 1

Estimating the norm of wL for a given ω, we can start with the uniform estimation C, and for
each occurrence of 0n0 or 1n1 in ω we can account a contribution of an extra factor · =C

C

1

2

1

2
to the estimate. That is, · ( )  w w-L C 2 H , where ( )wH denotes the number of occurrences
of either 0n0 or 1n1 in ω. Consequently, the norm in the claim can be estimated with

( ) · ( )
∣ ∣

∣ ∣ ∣ ∣ ( )å= -
w w

w w w

=

-S M C p p1 2 .
M

H

:

0 1

To estimate S(M), we will proceed by induction on M and denote by ( )S M0 and ( )S M1

the same sum restricted to the ω satisfying w = 01 or 1 respectively. Decomposing the sum
depending on the biggest number of initial 0ʼs or 1ʼs in ω, we have

( ) ( ) ( )

( ) ( ) ( ) ( )

 å

å

- + -

+ - - + - -

=

-

=

-

S M p S M i p S M n

p S M i p S M n

1

2

1
1

2
1 .

i

n
i n

i

n
i n

1

1

1 0

1

1

0 1

0

0

1

1

Considering that for each >i 1

( ) ( ) ( ) ( ) ( )< - < - -S i pS i S i p S i1 , 1 1 ,0 1

we can estimate

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

 å

å

- - - + -

+ - - - + - -

=

-

=

-

S M p p S M i p S M n

p p S M i p S M n

1 1
1

2

1 1
1

2
1 .

i

n
i n

i

n
i n

1

1

0

1

1

1

0

0

1

1

We have now a sequence S(M) which satisfies a recurrence inequality. It is natural to
compare it with the sequence satisfying the exact recurrence (with equality), which will
provide an upper bound on S(M).

A recurrence where each next element is defined as a positive combination of previous
terms can be estimated using the powers of the unique positive real root of the characteristic
polynomial. This technique is standard in the theory of linear recurrence sequences (see for
instance [Wil13]), and based on the following very simple idea: if the powers of the real
number α satisfy a linear equation

åa a=
=

-

cn

i

n

i
i

0

1

with positive coefficients ci (such α annihilates the polynomial, - --
-X c X c...n

n
n

1
1

0, called
characteristic polynomial of the recurrence), then whenever positive real numbers ¼x x, , n0

satisfy

å=
=

-

x c xn
i

n

i i
0

1

and satisfy  ax Ki
i for  <i n0 and some constant K, then  ax Kn

n. Iterating and using
a a ¼K K, ,2 in the role of K, if the xi are defined by recurrence for >i n, that is for each
>k n we have
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å=
=

-

- +x c x ,k
i

n

i k n i
0

1

we obtain that  ax Ci
i for each i 0.

Let { }=N n nmax ,0 1 . In our case, the characteristic polynomial is

( )

( ) ( )

å

å

= - +

+ - + -

=

-
- -

=

-
- -

X p p X p X

p p X p X

1
1

2

1
1

2
1 ,

N

i

n
i N i n N n

i

n
i N i n N n

1

1

1

1

0

0 0

1

1 1

and such an equation has a real root which is <1 by intermediate value teorem, because the
lhs is smaller than the rhs for X=0, but becomes bigger for X=1.

Such a root α should satisfy

( ) ( ) ( )

( ) ( ) ( ) ( )

( )

 å å

å å

a - + + - + -

= - + - + - + - - -

= - - -

=

-

=

-

=

-

=

-⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

p p p p p p

p p p p p p p p

p p

1
1

2
1

1

2
1

1
1

2
1 1

1

2
1

1
1

2

1

2
1 ,

N

i

n
i n

i

n
i n

i

n
i n n

i

n
i n n

n n

1

1

1

1

1

1

1

1

0

0

1

1

0

0 0

1

1 1

0 1

and observe that the sums under brackets are telescopic and can be simplified joining
consecutive terms to obtain p and - p1 respectively. Consequently, we have

( )a - - -⎜ ⎟⎛
⎝

⎞
⎠p p1

1

2

1

2
1 .n n

N1
0 1

Furthermore, we know that ( )  a< - +S i C C i N 1 for  <i N0 , and this implies that
( ) a< - +S M C M N 1 for all M, applying the above reasoning. Consequently ( ) <S M 1

2

whenever a - +M N
C

1 1

2
, and it will be sufficient that

( ) ( ) ( )a- - -M N C1 log log 2 .

Dividing by ( )alog (which is negative) and taking into account the estimation we have for α
we obtain the result whenever M satisfies the inequality

( )( )
 - +

- - - -
M N N

C
1

log 2

log 1
.

p p

2

1

2

n n0 1

,

6. Estimation of the error in the uniformly expanding case

In this section we explain how to estimate item 1 in the uniformly expanding case. We recall
what a Lasota–Yorke inequality is, and show that if such an inequality is satisfied by all the
transformations Ti, then such an inequality can again be proved for a convex combination of
their transfer operators.

Let X be the either unit interval [ ]0, 1 , either S1 (which we still identify to the unit interval
with the additional identification =0 1).
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Definition 6.1. We say that a map T on the interval X is piecewise expanding if X can be
partitioned in finite set of intervals where T is C2 and ∣ ∣¢ >T 2, and furthermore

( )

¢

T

T 2 is
bounded.

We will work with transfer operators on measures satisfying a Lasota–Yorke inequality

       m l m m+¢ ¢L B .N N
1 1

Note that if all the transfer operators of the single maps in an IFS satisfy a Lasota–Yorke
inequality, then the transfer operator of the IFS satisfies such an inequality too, as formalized
in the following proposition.

Proposition 6.2. Assume the operators Li to satisfy the inequality

       m l m m+¢ ¢L B ,i i i

for =i k1 ,..., then the convex combination = å =L p Li
k

i i1 satisfies

        å åm l m m+¢ ¢
= =

L p p B .
i

k

i i
i

k

i i
1 1

The proof is straightforward.

Remark 6.3. Please note that the fact that all the Li satisfy such inequalities is a sufficient
condition for the operator L to satisfy such an inequality: when all Li satisfy such an
inequality, then a convex combination also does. On the other hand, this condition is not
necessary. When some Li do not satisfy a Lasota–Yorke inequality, a combination may still
satisfy such inequality for a suitable choice of the pi. We remark that these this kind of
‘averagely expanding’ systems are already considered and studied in [Bla01, Pel84]. An
interesting case could be with one operator being the transfer operator of an irrational rotation
on the circle, and other operators satisfying a Lasota–Yorke inequality (see a concrete
example in section 8).

Remark 6.4. Note also that if

       m l m m+¢ ¢L B .

then applying the inequality iteratively we have

       m l m
l

m+
-

¢ ¢L
CB

1
.N N

for each N, where C is an upper bound for   Li for < <i N0 (note that C = 1 for
 = L1). Hence the Lasota–Yorke can always be recovered from the N=1 case, up to
replacing B with a bigger constant.

We cite here a few results on the existence of such inequality in the case of uniformly
expanding maps of the interval.

Theorem 6.5. Assume T to be piecewise expanding on the interval X, C2 on the intervals
( )+d d,i i 1 , where = < < < =d d d0 1n1 2 . Then its transfer operator on measures of
bounded variation satisfies for each N
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     m l m m+L B ,N
BV

N
BV L1

where

·
( )

·
( )

 l
¢

+
¢¢
¢¥ + ¥T

B
d d

T

T
2

1
,

2

min ,
2 .

i i 1
2

For proof, see [GN14, theorem 5.2 and remark 5.3].
From now on, L will be assumed to be an operator obtained considering a convex

combination = å =L p Li
k

i i1 , and satisfying

     m l m m+L B .N
BV

N
BV L1

Remark 6.6. An invariant probability measure of an operator satisfying such a Lasota–
Yorke inequality has bounded variation and satisfies   m BBV .

We can now describe the approximation strategy. To obtain an estimate in L1 we can take
as approximation operator pd the conditional expectation operator with respect to a uniform
partition Fδ of X in intervals of size δ:

( ) ( ∣ )p m m=d dFE .

The approximated operator p p=d d dL L is known as the Ulam approximation of L.

Proposition 6.7. If dL is defined as above then

   d-d L L 2 .BV L1

For proof, we refer to lemma 5.5 of [GN14] which proves the inequality for the transfer
operator of a dynamical system (as each of the Li is). Thus being L obtained as a convex
combination we have

    å å d d- - =d d L L p L L p 2 2 .BV L
i

i i i BV L
i

i,1 1

As observed in remark 6.6 we can bound from above the bounded variation norm of μ.
This permits us to obtain item 1 of theorem 3.1 by using the proposition above.

Remark 6.8. As pointed out in [BB11, GN14], similar results hold for the pair of norms Lip
and ¥L , in the place of the pair BV, L1. It is hence possible to obtain similarly a rigorous
computation of the invariant density in the ¥L norm, using essentially the same strategy. The
same extension can also be done in the IFS case.

7. Some remarks on implementation

The topics in this section apply equally to the experiments in sections 8 and 10. The code used
in our experiments is available at

http://im.ufrj.br/~maurizio.monge/wordpress/rigorous_computation_dyn/.
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To certify the numerics, we use the interval arithmetics libraries that are available
through the SAGE Mathematics Software [Dev15].

The assembly of the matrix in the piecewise expanding case is done by using interval
arithmetics Newton methods while the estimates for the contraction rate are made with double
precision arithmetics with rigorous (and conservative) bounds on the iteration error.

In the contracting case the Newton method is not necessary, and we can rigorously
assemble the approximated operator directly, using interval arithmetic to keep track of pos-
sible numerical errors.

8. Implementation in some piecewise expanding examples

Let us consider the smooth dynamical systems on [ ]0, 1 given by

( ) · ( ) ( ) · ( )p p= + = +T x x x T x x x4 0.01 sin 16 , 5 0.03 sin 5 .1 2

Then in our case we have (not iterated) Lasota–Yorke constants that are

( )
( )

( )
( )

l l=
=

=
=

⎡
⎣⎢

⎡
⎣⎢

T
B T

T
B T

0.333924
11.26927

0.246455
1.798453

1

1

2

2

and consider the systems defined via the maps T T,1 2 where the probabilities are selected
putting

=p 0.1, 0.3, 0.5, 0.7, 0.91

and = -p p12 1. The constants l B, we obtain by theorem 6.5, as well as an estimate on the
BV norm of the stationary measure, are respectively given by the pairs

 

l

m

p

B

0.1 0.3 0.5 0.7 0.9

0.255 202 0.272 696 0.290 190 0.307 683 0.325 177
2.745 53 4.639 69 6.533 86 8.428 02 10.322 19
3.686 28 6.379 31 9.205 08 12.173 66 15.296 15BV

1

We select d = -2 16, obtaining

  - d 
-L L 2BV L

151

from proposition 6.7. We prove computationally that the Ulam matrices of T1, T2 contract to
a = 1

2
in 9 and 8 steps respectively, and similarly compute the contracting rate for the IFS

transfer operator. Considering that in theorem 3.1 all Ci are 1 we can estimate the L1 error as

· ·     m m m
a

- -
-d d L L
N

1
,L BV L BV1 1

N being such that   a<dL N (contraction rate). As we will show later, we can also give an
error estimation depending on an a priori estimation of the decay time. The estimation
obtained in this way is rather pessimistic, but is obtained only from the contraction time for
the operators associated to T1 and T2, that is, skipping the more numerically intensive
computation.
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( )

( )

p

N

L
AprioriN

AprioriL

0.1 0.3 0.5 0.7 0.9

contraction rate 8 7 7 8 9

error 0.001 80 0.002 72 0.003 93 0.005 94 0.008 40
contraction rate 34 222 2135 314 37

error 0.007 66 0.0865 1.200 0.233 0.0345

1

1

1

In the table the contraction rate is the N such that   a<dL N , while the error is  m m- d c L,
1

(md c, being the computed approximation of md , that is, a rigorous estimate of the numerical
error has been added). The a priori equivalents are obtained via theorem 5.2 rather than via an
expensive computation; except for two central values, the a priori error could already be
considered acceptable.

We conclude with an example of IFS formed replacing the above transformation T1 with
an irrational rotation by 2 . Such a map satisfies a (trivial) Lasota–Yorke with l = 1 and
B=0, but for each nontrivial value of the pi the transfer operator of the corresponding IFS
satisfied a nontrivial Lasota–Yorke (with l < 1). Taking d = -2 14, we can compute the
stationary measure up to the error specified below (see figure 1).

( )

l
p

B
N

L

0.2 0.4 0.6 0.8

0.397 16 0.547 87 0.698 58 0.849 29
1.438 76 1.079 07 0.719 38 0.359 69

contraction rate 8 9 12 20

error 0.001 168 7 0.001 313 9 0.001 750 6 0.002 915 5

1

1

8.1. Convergence to equilibrium

We will apply here section 4ʼs results to the case of uniformly expanding maps (see figure 2).

Figure 1. The stationary measures in the expanding examples.
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Let us compute the constants C, D appearing in the (5). Let U be a uniform estimate on
the norm of  dL i

w and  Li
w. We assume a Lasota–Yorke inequality

      l +L g g B g ,i
s

i
s w

to be satisfied, and in the other hand

( ) ( )å- = -d d d
=

-
- -L L L L L L ,n n

i

n
n i i

0

1
1

consequently

· ·

· ( )

·

       

     

     







å

å l

l

-

- +

-
-

+

d d

d

d

=

-
- -




=

-

 ⎜ ⎟⎛
⎝

⎞
⎠

L g L L L L g

U L L g B g

U L L g nB g
1

1
.

i
s

i

n
n i

w s w
i

s

s w
i

n
i

s w

s w s w

0

1
1

0

1

In the case of the strong norm being BV and the weak one L1, we have U=1 (because L and
pd are contractions with respect to L1), and   d-d L L 2s w by proposition 6.7. Hence, we
can take

l
=

-
=C D B

2

1
, 2 .

We will take l = 1 22 , and let =n N1 be the computed N such that   dL 1 2N .
Consequently, the convergence to the equilibrium is controlled by the matrix

Figure 2. Examples with rotation and expanding map.
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( ) l
d l d

=
- +

⎛
⎝⎜

⎞
⎠⎟

B
NB2 1 2 1 2

.
N

We recall that computing the biggest eigenvalue ρ and the corresponding left eigenvector (a,
b), we obtain an estimation for the asymptotical behavior of the convergence to equilibrium:

( )        
r r

L g
a

g L g
b

g, . 9n k
s

k

s
n k

w

k

s1 1

Remark 8.1. Note that by (9) and the spectral radius formula ρ is a bound for the spectral
radius of the operator restricted to the zero average space. Hence giving an estimation for the
spectral gap.

We implemented these ideas and techniques on the first example of section 8. The
following table summarizes the results of the computation, where an expression of the form

a a... b b
c c

1 0
...

0 1
0 1 (ai, bi, ci being digits) means that the value is rigorously contained the interval

formed by the numbers with decimal expansions a a b b... ...1 0 0 1 and a a c c... ...1 0 0 1 (same
notation of [Tuc10]). The table gives values for the ρ and (a, b) that appear in (9).

( )

( )
( )

( )

r
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

p

N

a
b

0.1 0.3 0.5 0.7 0.9

contraction rate 8 7 7 8 9

biggest eigenval. 0.500 0.5013 0.5019 0.502 0.5037

left eigenvec.
0.000081

0.999918

0.000083

0.999916

0.000085

0.999914

0.000087

0.999912

0.000089

0.999910

1

89
9

7
8

5
6

79
8

6
7

7
8

2
3

7
8

2
3

6
7

3
4

6
7

3
4

7
8

2
3

9. Contracting maps

In the case of contracting maps, the strategy is similar but the functional spaces are totally
different. In fact, the transfer operator turns out not to be a contraction when applied to spaces
of regular absolutely continuous measures like BV or C1.

A space in which the transfer operator attached to a contracting map is a contraction is
the dual of Lipschitz, that is the space of measures having finite norm

( ) ( )
 


òm f m=

f fÎ
sup d ,W

C X X:Lip 10

where we denote by ( )fLip the Lipschitz constant of f (with respect to some distance on X).
We remark that μ has to be a zero-average measure for  m W to be finite; if m m m= -1 2 for
positive measures m1 and m2,  m W is also known as the Wasserstein–Kantorovich distance
(well known in transportation theory, and also known as Earth-moving distance) between m1
and m2.

Let T be a contraction with contraction rate α and L be the corresponding transfer
operator. Then for each f satisfying ( ) fLip 1 we have
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( ) ( ) ( ( )) ( )

( ( )) ( )  

ò ò

ò

f m f m

a
f

a
m a m

=

=

x L x T x x

T x
x

d d

d

X X

X
W

observing that

( ( )) f
a

⎜ ⎟⎛
⎝

⎞
⎠

T x
Lip 1.

This proves that the operator L satisfies

( )   m a mL 10W W

for each zero-average Borel measure m Î V .

Remark 9.1. From now on we will just assume L to be a contraction, i.e. satisfying (10).
Since we just proved that the transfer operator associated to a single contracting map satisfies
(10), this will also be true for the transfer operator of an IFS as its transfer operator is obtained
as a convex combination of the operators.

Assume now X be a bounded domain in n equipped with the ‘Manhattan’ (L1) distance
(· ·)d ,M defined as

( ) ∣ ∣å= -
=

d x y y x, ,M
i

n

i i
0

with respect to which we will assume our maps to be contractions (and that we will use to
evaluate the · W norm). We will define a projection on the space of measures that is a weak
contraction in the · W distance.

We will discretize spatially the bounded measures in Rn working one-dimension at a
time, depending on a parameter δ determining the coarseness of the discretization. Assume
our domain X to be contained in a parallelepiped

[ ] [ ] [ ]P = ´ ´¼´P Q P Q P Q, , , ,n n1 1 2 2

and let us also assume for convenience that each size -Q Pk k is an integer multiple of δ, dNk

say. We will put

d= +p P ik i k,

for  k n1 and  i N0 k , so that the pk i, are a uniform partition of the interval [ ]P Q,k k .

Remark 9.2. We will now define a projection operator pk that aligns all the mass to the
partition pk i, in the kth dimension. The mass that is not aligned is moved to the closest aligned
points (with coordinates pk i, and +pk i, 1, say), linearly interpolated so that the closest points get
more mass. That is, the measure ( )( )p m Ak of a set A will only depend on the slices of A that
are partition-aligned (because the new measure is only concentrated on the aligned points),
and each slice will have mass that is given by μ weighted with a hat function centered in a
point of the grid, on the set of points that along the kth dimension are projected onto the slice.

Let sk i, be the projection along the kth coordinate to the plane formed by points where
such coordinate is equal to pk i, :
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(( )) ( )s ¼ = ¼ ¼- +x x x x p x x, , , , , , , , .k i n k k i k n, 1 1 1 , 1

Let now

( )
∣ ∣ ∣ ∣  d

=
- - -

d
⎪

⎪

⎧
⎨
⎩

h x
x p x p1 if ,

0 in any other case,
k i

k k i k k i
,

1
, ,

so that this function goes linearly from the value of 1 at points with =x pk i, to 0 where
= -x pk i, 1 or = +pk i, 1.
Recall that the pushforward of a measure μ via a function f is defined as

( )( ) ( ( ))
*
m m= -f A f A .1

Notice that given any measure μ on Π, the measure ( )
*

s mhk i k i, , is obtained moving to the
plane =x pk k i, the nearby measure, weighted with the function hk i, .

We define the projection as

( ) ( )
*åp m s m=d

=
h .k

i

N

k i k i,
0

, ,

k

Intuitively, pd k, can be viewed as the operation of moving ‘sliding the kth coordinate’ all
the mass to the affine planes of equations =x pk k i, , using the functions hk i, to spread linearly
the contribution from each point to the nearby planes.

Example 9.3. To visualize how the projection works, assume [ ] [ ]P = ´0, 1 0, 1 ,
( )m d= 1 3,2 5 (the atomic measure centered in ( )1 3, 2 5 ) and the grid size to be 1. The

we have

( ) ( )( ) ( ) ( ) ( )p m d d p m d d= + = +
2

3

1

3
,

3

5

2

5
,1,1 0,2 5 1,2 5 1,2 1 3,0 1 3,1

and

( ( )) ( ( )) ( ) ( ) ( ) ( )p p m p p m d d d d= = + + +
2

5

4

15

1

5

2

15
.1,2 1,1 1,1 1,2 0,0 0,1 1,0 1,1

We put p p p=d d d n,1 , (these operators obviously commute), and such pd can be easily
described as

·
( )

òåp m d m=d
=

h d
p p p

p p
,...,i n in1, 1 ,

where for such given point p of the grid dp is the atomic measure in p and

=
=

h h .p
j

n

j p
1

, j ij,

We prove the following proposition.

Proposition 9.4. If   m 1W , then   p md 1k W, .

Proof. We need to prove that òf p mdd 1k, for each admissible function f. We will

describe a suitable linearization f̃ of f that on one hand will satisfy
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˜ ( )ò òf p m f p m=d dd d , 11k k, ,

and on the other hand will have Lipschitz constant 1 and satisfy

˜ ˜ ( )ò òf p m f m=dd d . 12k,

Given f, we put

˜ ( ) ( ) (( ))åf f= ¼ ¼
=

- +x h x x x p x x, , , , , , .
i

N

k i k k i k n
0

, 1 1 , 1

k

On the points x such that xk is equal to some pk i, the f̃ is equal to f, so (11) is clearly satisfied.
To prove (12), we can just check it on the atomic μ that are dy for some ( )=y y y,..., n1

and reason by density. Note that

( ) ( )( )åp d d=d
=

¼ ¼- +
h y , 13k y

i

N

k i y y p y y,
0

, , , , , , ,

k

k k i k n1 1 , 1

so the lhs of (12) turns out to be equal to

˜ ( ) ˜ò òf f d=y d .y

It remains to prove that f̃ also has Lipschitz constant 1 (with respect to the Manhattan
distance), but let y, z be two points and put ( )= ¼ ¼- +w y y z y y, , , , , ,k k k n1 1 1 . We have

∣ ˜ ( ) ˜ ( )∣ ∣ ˜ ( ) ˜ ( )∣ ∣ ˜ ( ) ˜ ( )∣f f f f f f- - + -y z y w w z

and note that on the segment from y to w f̃ is piecewise linear with slope 1, while
˜ ( ) ˜ ( )f f-w z is obtained as convex combination of quantities that are all ( )d w z,M .
Consequently

∣ ˜ ( ) ˜ ( )∣ ( )f f-y z d y z, .M

We conclude that òf p mdd 1k, . ,

We are left with the problem of estimating the distance between the fixed points of L and
Lδ, where L is the transfer operator of the IFS (or more in general any operator satisfy-
ing    m a m<L W W ).

Proposition 9.5. If L and dL are defined as above we have

( )   a
d

- +d L L
n

1
2

.L W1

Proof. Recall the definition of  m L1 in equation (2), we start observing that

  p- d
d

1 .k L W, 2
1

When pd k, is applied to an atomic measure m d= y the mass will be split by pd k, in at most two
atoms at distance dl and ( )d l-1 and mass l-1 and λ, and consequently

( )   m p m dl l- -d
d2 1k W, 2

taking the maximum over all [ ]l Î 0, 1 . This inequality holds when μ is an atomic measure
m d= y, and extends to the case of μ being a finite convex combination of such measures (by
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linearity of pd k, ). Such measures are dense in the space of all probability measures with
respect to the · W distance, hence this inequality holds for all probabilities measures μ.

Applying this estimate for all dimensions we obtain that

  p
d

- d 
n

1
2

,L W1

and it follows that

( ) ( )
· ·

( )

     
       






p p p
p p p

a
d

- - + -
- + -

+

d d d d

d d d



 

L L L L

L L

n

1 1

1 1

1
2

.

L W

W L W L W L

1

1 1 1

,

Since an invariant probability measure has L1 norm equal to 1, we have that

( ) ( )  m m a
d

- +dL L
n

1
2

, 14W

and as consequence of corollay 3.2 we have

( )
( )

  m m
a d
a

-
+
-d

n1

2 1
.W

This gives an estimation that can be applied be applied to obtain 1 of theorem 3.1, and is
our main ingredient in the estimation of the error for the approximation of the stationary
measure in this kind of systems.

10. An example in the contracting case

In the contactive case each map has an approximated transfer operator p p=d d dL L (repre-
sented as a matrix) that can be computed very easily. We take the image of a dx for x in the
grid (an atom in x) via the map and approximate the ( )dT x obtained (which will not be aligned
to the grid) to the measure ( )( )p dd T x supported on the grid using equation (13).

We take all dx for x in the grid as a basis of the finite dimensional space of measures
supported on the grid, and being ( ) ( )( )d p d=d dL x T x we obtained the expression of ( )ddL x as
combination of elements of the basis. The matrix P obtained represents the operator Lδ in this
basis, and the decay time of Lδ (or of P) can be estimated by the contraction rate of L via
proposition 9.4.

The IFS also has a transfer operator, obtained as the linear combination of the transfer
operator of the maps, and is also contracting being a convex combination of contracting
operators, (its decay time can obtained as combination of the decay times of the maps). The
obtained matrix is then iterated to approximate the fixed point of Lδ, the goodness of the
approximation is then a consequence of its proven decay time.

The informal description of the algorithm is the same as explained in section 3, with the
difference that the decay time N is estimated directly from the contraction rate of the operator
L. The matrix P representing (an approximation) of Lδ is built as explained in the beginning of
the section.

We made an example in the following case: the maps ¼T T, ,1 4 are defined on the square
[ ] [ ]´0, 1 0, 1 as
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• T1: scaling by 0.4 around ( )0.6, 0.2 with rotation by p 6,
• T2: scaling by 0.6 around ( )0.05, 0.2 with rotation by p- 30,
• T3: scaling by 0.5 around ( )0.95, 0.95 ,
• T4: scaling by 0.45 around ( )0.1, 0.9 .

We took the probabilities

= = = =p p p p0.18, 0.22, 0.3, 0.3,1 2 3 4

and a grid of size ´2 210 10, so that d = -2 10. It turns out that the contraction rate α is at most
0.659 430, so the error can be estimated by

( )
( )

   m m
a d
a

-
+
-d

n1

2 1
0.004 7583.W

Here is an image of the computed invariant measure (see figure 3).

Figure 3. The stationary measure of the contracting example.
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Remark 10.1. The computation of the contraction rate as done in section 8 for the expanding
case is not necessary here, as we already know that the transfer operator is a contraction with
respect to · W as proved at the beginning of section 9 (with explicit constants).
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