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Abstract
In this paper we present a general result with an easily checkable condition that ensures a
transition from chaotic regime to regular regime in random dynamical systems with additive
noise. We show how this result applies to a prototypical family of nonuniformly expanding
one dimensional dynamical systems, showing the main mathematical phenomenon behind
Noise-induced Order.

Keywords Noise-induced order · Random dynamical systems · Non-uniformly hyperbolic ·
Unimodal maps · Lyapunov exponents

Mathematics Subject Classification Primary 37H05; Secondary 37C30 · 37A30 · 37D25 ·
37H15

1 Introduction

This article deals with the behavior of one dimensional nonuniformly hyperbolic systems
with random additive noise.

A nonuniformly hyperbolic one dimensional dynamical system is a dynamical system in
which expansion and contraction coexists; the behavior of such a system is a delicate balance
between how often the orbits of such a system visit the expanding and contracting region.
Such a system is called non uniformly expanding when the system visits more often the
expanding region of the phase space.

Such balance may depend in non-trivial ways from a parameter: classical examples of
unimodal maps, as the quadratic family, have a dense subset of parameters for which the
deterministic dynamic presents an attracting periodic orbit, called regular parameters and a
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positive Lebesgue measure Cantor set of parameters for which the dynamic shows chaotic
behavior called stochastic parameters.

In this paper we will study a generalization of the quadratic family, allowing the order of
the critical point to vary, the family

Tα,β(x) = 1 − 2β|x |α;
these are symmetric unimodal maps, defined on [−1, 1], for α ∈ [2,+∞), β ∈ (0, 1].
We will study the behavior under iterations of these maps with the addition of a random

noise at each iteration step, i.e.,

Xn+1 = Tα,β(Xn) + �ξ ,

where �ξ is a random variable which takes values in [−ξ, ξ ] with density

ρξ (x) = 1

ξ
ρ

(
x

ξ

)
,

where ρ is a positive BV density on [−1, 1]. We call ξ the amplitude of the noise; we
denote the points of the orbits with a capital X to stress the fact that they are random variables.
This is called a random dynamical system with additive noise of amplitude ξ .

We will show that when β = 1 and α is bigger than a computable constant α̃ > 2.678351

as the noise amplitude increases, the system transitions from a chaotic behavior to an ordered
behavior; this transition is measured quantitatively by a transition of the Lyapunov exponent
associated to the stationary measure from positive to negative.

This surprising phenomenon is called in the literature Noise Induced Order and was first
observed in numerical simulations of a model of the Belosouv–Zhabotinsky reaction [16],
called the BZ map; a proof of its existence for the BZ map was given recently in [11].

In this paper we show the main mechanism behind this phenomenon; the presence of
noise changes the statistical properties of the dynamical system, in particular, if we start
with a non-uniformly expanding map, adding noise may break the delicate balance between
expansion and contraction, and the average long term behavior changes from expanding to
contracting.

ManyNoise Induced phenomena [8, 21] are of strong interest for the appliedmathematical
community and in general for applied sciences but until recently they have not woken the
interest of the dynamical system community. Important results have been reached in [6, 7],
in the study of the Henon and the Standard map with noise.

In Fig. 1 we have a plot of some numerical experiments on the family Tα,β , where fixed
β = 1, for each exponent α (in the vertical axis) and noise amplitude ξ (in the horizontal
axis) we compute 200 orbits of length 10,000, each one with a randomly chosen starting
point and different random realizations of the noise, and compute the average of ln(|T ′(x)|)
with respect to the length of the orbit, and take the average of these Birkhoff averages; the
rationale behind this is that supposing that the simulated system satisfies some type of Central
Limit Theorem the mean of the finite time Birkhoff averages of all these orbits is a a better
estimator of the Lyapunov exponent than the average along an individual orbit.

This plot hints that Noise Induced Order may be present in the family Tα,β ; on the left
side of the plot, which presents the value of the estimator when the noise amplitude is 0 the
estimator is positive. On the right side of the plot, for noise amplitude 1.0, we can see that if
the order of the critical point is big enough the estimator is negative.

1 the value of α̃ is contained in [2.67834, 2.67835], therefore, our result does not apply to the case α = 2, the
quadratic family
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Fig. 1 The family Tα,1 and estimate of its Lyapunov exponent as α and the noise size ξ vary

More complex behavior can be conjectured from this plot: there are values of α for which
we can observe multiple sign changes, but the results in this paper only allow us to prove the
existence of one transition. The existence of multiple transitions could be proved by using
Computer Aided Tools as the ones used in [9, 11].

The article [16] has been highly influential in the applied sciences;we think that a sufficient
condition for the existence of this phenomena is extremely interesting both for the researchers
in dynamical systems, since we present a wide family of examples whose deterministic
behavior and behavior under the action of noise are different, and for the applied scientists,
since this sufficient condition is easily checkable.

Our paper shows thatNoise InducedOrder is strongly linkedwith nonuniformlyhyperbolic
dynamics and that the existence of this kind of phenomena stresses the importance of the
study of random dynamical systems beyond stochastic stability. We think that our paper will
contribute to show the richness of the behavior of dynamical systems with additive noise.

Our choice of the title is a direct answer to [16]; indeed, from the results of [11] and
the results in the current paper, we can assert that we found the main mechanism for Noise
Induced Order in the 1-dimensional case. Please remark that to apply the techniques in the
present article to the BZ map from [11] we need a computer assisted step: the BZ map does
not fit in our framework to study stochastic stability for nonuniformly hyperbolic maps but
our argument works once positive Lyapunov exponent and contraction of the space of average
0 functions is proved for a small noise amplitudes, which is the difficult part of [11] and the
main computer aided estimate.

1.1 Statement of the Results

In this paper we prove that, under some assumptions, for all noise amplitudes ξ > ξ0 the
random dynamical system has a unique ergodic absolutely continuous stationary measure
μξ .

The Birkhoff Ergodic Theorem for Random Dynamical Systems tells us that, for a fixed
noise size ξ , forμξ -a.e. initial condition x0 and for almost all noise realizations we have that

lim
n→+∞

1

n

n∑
i=0

ln(|T ′(Xi )|) =
∫

ln(|T ′|)dμξ .
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As ξ varies we are interested in the behavior of the Lyapunov exponent as a function of
noise amplitude; remark that in the next formula, as ξ varies μξ is varying:

λ(ξ) =
∫

ln(|T ′|)dμξ ;

as in [11], we define Noise Induced Order as follows.

Definition 1.1.1 We say that a system exhibits Noise Induced Order if there exist 0 < ξ1 <

ξ2 such that for all ξ ≥ ξ1 the system has a unique stationary measure with density fξ and
the Lyapunov exponent of the stationary measure transitions continuously from positive to
negative, i.e., λ(ξ1) > 0, λ(ξ2) < 0.

Remark 1.1.2 There is an ongoing discussion in the community on the “right” definition of
Noise Induced Order; in [16] are indicated:

• sharpening of power spectrum,
• abrupt decrease of entropy,
• appearance of negative Lyapunov number,
• localization of orbit.

In [11] the existence of a transition for the Lyapunov exponent from positive to negative
was used as a definition of Noise InducedOrder. The continuity argument in the present paper
shows that there exists a “big” noise amplitude such that for all noise amplitudes bigger than
this given noise amplitude, the Lyapunov exponent is negative.

Remark 1.1.3 The definition allows a deterministic map with negative Lyapunov exponent to
show noise induced order: a regular parameter under the action of noisemay show a transition
to positive Lyapunov exponent for a small noise amplitude and a negative Lyapunov exponent
for a larger noise amplitude.

Ourmethod to prove the existence of this transition is quite general and it follows from two
simple observations: the first one is that once contraction of the space of average 0 functions
in BV (also called exponential decay of correlations in BV ) is proved for a noise size ξ0, the
Lyapunov exponent is continuous with respect to ξ for all ξ > ξ0.

The second one is that as the noise amplitude grows, the density of the stationary measure
becomes uniform, and therefore, the limiting behavior of the Lyapunov exponent is the
average of ln(|T ′|) with respect to the uniform density on [−1, 1].

Many results on stochastic stability have been proved [1, 2, 4, 22] that hint on the direction
that positive Lyapunov exponent may imply stochastic stability (see also the conjecture in
[24]). Therefore we would like to state the following conjecture.

Conjecture 1.1.4 Let T : I → I be a piecewise C1 dynamical system, nonsingular with
respect to Lebesguemeasure, which admits a unique absolutely continuous invariantmeasure
with positive Lyapunov exponent; if

−∞ <

∫ 1

−1
ln(|T ′|)dm

2
< 0

then the associated random dynamical system with additive noise with bounded variation
density presents Noise Induced Order.
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Remark 1.1.5 The uniform density on [−1, 1] is 1/2, which is the reason why many 1/2
appears in the hypothesis above and in the conditions below.

While this notation is unneccessary, we would like to state the conditions in this form, to
stress the mechanism underlying the transition.

While we cannot prove this conjecture in its full generality, due to the technical diffi-
culties involved in proving stochastic stability in a general setting, in this paper we prove
the following theorem; please note that the hypothesis denoted by D are hypothesis on the
deterministic system, while the hypothesis denoted by R are hypothesis on the associated
random dynamical system with additive noise.

Theorem 1.1.6 Let T : [−1, 1] → [−1, 1] be a piecewise C1 nonsingular dynamical system
such that

D1 admits a unique absolutely continuous invariant probability measure μ0 with density f0,
D2

∫ 1
−1 ln(|T ′|)dμ0 > 0,

D3 ln(|T ′|) ∈ L p for some p > 1.

Let μξ be a fixed point for Lξ , the annealed transfer operator (Defined in 2.4.13) and let

λ(ξ) =
∫ 1

−1
ln(|T ′|)dμξ .

Suppose now:

R1 there exists ξ0 such that λ(ξ) is well-defined and continuous in [0, ξ0),
R2 there exist ξ1 in [0, ξ0), C > 0, θ < 1 such that ||Pn

ξ1
|U0 ||BV ≤ Cθn, where Pξ1 is the

annealed Perron–Frobenius operator associated to the random dynamical system with
noise size ξ1, defined in Definition 2.4.13 and U0 is the subspace of BV functions with
average 0 defined in Definition 2.5.6,

R3 −∞ <
∫ 1
−1 ln(|T ′(x)|)dm/2 < 0,

R4 the noise kernel is a mother noise kernel (Definition 2.4.11).

Then, the function λ(ξ) is well defined for and continuous for ξ ≥ 0 and the map T exhibits
Noise Induced Order.

The proof of the theorem is found in Sect. 3.
We will try to give an intuition behind the hypothesis for this Theorem and our proof.

Hypothesis D1 andD2 are telling us that the original system has positive Lyapunov exponent;
the deterministic system is chaotic, D3 is amild regularity assumption.Hypothesis R1 follows
from the stochastic stability and tells us that Lyapunov exponent is continuous in a small
neighborhood of 0. Hypothesis R2 kickstarts our continuity argument; remark that even if
the underlying dynamical system has subexponential decay of correlations, this hypothesis
may be satisfied, due to the smoothing properties of noise. Hypothesis R3 is an hypothesis on
the behavior of the system when the noise is big; as the noise size increases the noise moves
the random orbits uniformly inside the system, so the Lyapunov exponent along random
orbits is negative. Hypothesis R4, the fact that the noise density is a mother noise kernel can
be intuitively understood as the fact that, as the noise amplitude increases, the support of the
noise contains the support of smaller amplitude noises.

The consequences for the family Tα,β are summarized in the following theorem and are
proved in Sect. 4
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Theorem 1.1.7 Let T : [−1, 1] → [−1, 1] be of the form
Tα,β(x) = 1 − 2β|x |α.

For all α > α̃ > 2.67835 there exists an ε(α) such that for all β ∈ (1− ε(α), 1] the map
Tα,β exhibits Noise Induced Order.

1.2 Structure of the Paper

Westart in Sect. 2wherewe introduce the annealed transfer operator, prove that contraction of
the space of average 0 function for a noise amplitude implies contraction for all bigger noise
amplitudes and prove that the Birkhoff averages of L1(m) observables are continuous with
respect to noise size and the underlying dynamics once contraction of average 0 functions
is established. Section 3 is a small section, where we present the proof of Theorem 1.1.6.
Section 4 studies the family Tα,β , by producing results on its stochastic parameters, stochastic
stability and showing the conditions on α and β that imply that maps in the family present
noise induced order.

2 The Annealed Transfer Operator

2.1 Generalities on the Involved Functional Spaces

Definition 2.1.1 Let [a, b] ⊂ R be an interval endowed with the Lebesgue measure m; we
denote by Lr ([a, b]) the Banach space of real valued functions such that

|| f ||Lr ([a,b]) := r

√∫ b

a
| f |r dm < +∞.

We will drop the interval from the notation when clear from the context. Of particular
interest for us is L1([−1, 1]).

We define L∞([a, b]) to be the Banach space of real valued functions such that

|| f ||L∞([a,b]) := esssupx∈[a,b]| f (x)| < +∞,

where the essential supremum is the smallest real number a such that | f (x)| ≤ a for
m-almost every x in [a, b].
Definition 2.1.2 We will call a density a nonnegative function f ∈ L1([a, b]) such that

∫ b

a
f dm = 1

Lemma 2.1.3 If f is a density, then

|| f ||L1([a,b]) = 1.

Proof This follows from the definition, since f is nonnegative
∫ b

a
| f |dm =

∫ b

a
f dm = 1.
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Definition 2.1.4 Let φ : [a, b] → R be a real valued function on [a, b], we define the
variation of φ on [a, b] as

Var[a,b](φ) = sup
P

∑
i

|φ(xi+1) − φ(xi )|

where P is any partition of [a, b] with endpoints xi . If the variation of φ is finite, we say
that φ is a function of bounded variation on [a, b]. The functions of bounded variation on
[a, b] are a Banach space when equipped with the norm

||φ||BV ([a,b]) := ||φ||L1([a,b]) + Var[a,b](φ).

When the domain [a, b] is clear, we will drop the subscript.
In the following lemma, we need to pay some attention on the domain of definitions of the

functions and to the support of measures: the convolution is defined in general for functions
defined on the real line, while we speak of functions which are L1 or bounded variation on
intervals.

Definition 2.1.5 Denote by χX is the characteristic function of the set X .
In the following we will denote by

φ̂ = φ · χ[−ξ,ξ ]

and by

f̂ = f · χ[−1,1]

the functions that extend by 0 outside their intervals of definition the functions φ and f
respectively.

Given a probability measure μ on [−1, 1] we define its extension μ̂ on R as the unique
measure μ̂ on R such that

μ̂(A) = μ(A ∩ [−1, 1])
for all A measurable in R.

Lemma 2.1.6 The following are true:

(1) Var[a,b](φ̂) ≤ Var[−ξ,ξ ](φ) + 2 sup[−ξ,ξ ] |φ(x)| ≤ 3||φ||BV ([−ξ,ξ ]) for all interval [a, b]
that contains [−ξ, ξ ],

(2) || f̂ ||L1([c,d]) = || f ||L1([−1,1]) for all interval [c, d] that contains [−1, 1],
(3) μ̂([−1 − ξ, 1 + ξ ]) = 1 for all ξ .

Proof Both follow from the respective definitions. We first prove item (1); let {x1 =
a, . . . , xn = b} be a partition of [a, b], without loss of generality we can suppose that
xl = −ξ , xl+k = ξ .

Then

n∑
i=1

|φ̂(xi+1) − φ̂(xi )| = |φ̂(xl)| +
l+k−1∑
i=l

|φ̂(xi+1) − φ̂(xi )| + |φ̂(xl+k)|

= |φ(xl)| +
l+k−1∑
i=l

|φ(xi+1) − φ(xi )| + |φ(xl+k)| ≤ Var[−ξ,ξ ](φ) + 2 sup
[−ξ,ξ ]

|φ(x)|.
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We prove now item (2):∫ d

c
| f̂ |dm =

∫ d

c
| f · χ[−1,1]| =

∫ 1

−1
| f |dm = || f ||L1([−1,1]).

Finally item (3)

μ̂([−1 − ξ, 1 + ξ ]) = μ([−1 − ξ, 1 + ξ ] ∩ [−1, 1]) = μ([−1, 1]) = 1.

	


2.2 Regularization Properties of Convolution onMeasures

In this subsection we define what is the convolution of a measure with respect to a bounded
variation function and prove some regularization properties of this operator; the most impor-
tant is that convolution of a measure with a bounded variation functions is a measure which
is absolutely continuous with respect to Lebesgue.

Definition 2.2.1 Letμ be any probabilitymeasure in [−1, 1], and let ρ be a bounded variation
function on [−ξ, ξ ]with ∫ ξ

−ξ
ρ = 1; their convolution is the unique probability measure ρ̂∗μ̂

on R such that

ρ̂ ∗ μ̂(A) =
∫

[−ξ,ξ ]
ρ̂(y)μ̂(A − y)dm(y),

where A − y to denote the set {x − y | x ∈ A}.
Lemma 2.2.2 The following properties of ρ̂ ∗ μ̂ are true:

(1) ρ̂ ∗ μ̂([−1 − ξ, 1 + ξ ]) = 1,
(2) if μ = δp, the Dirac-δ measure at p ∈ [−1, 1] we have that

ρ̂ ∗ δ̂p = ρ̂(x − p) · m(x);
in particular, ρ̂ ∗ δ̂p is absolutely continuous with respect to Lebesgue,

(3) if μ = f dm then ρ̂ ∗ μ̂ has density ρ̂ ∗ f̂ .

Proof Item (1) follows from the definition and Item (3) in Lemma 2.1.6:

ρ̂ ∗ μ̂([−1, 1]) =
∫

[−ξ,ξ ]
ρ̂(y)μ̂([−1 − ξ, 1 + ξ ])dm(y)

= μ([−1, 1])
∫

[−ξ,ξ ]
ρ̂(y)dm(y) = 1.

Item (2) follows from the definition, recalling that δp(A) = χA(p):

ρ̂ ∗ δ̂p(A) =
∫

[−ξ,ξ ]
ρ̂(y)δ̂p(A − y)dm(y) =

∫
[−ξ,ξ ]

ρ̂(y)χA−y(p)χ[−1,1](p)dm(y)

=
∫

[−1−ξ,1+ξ ]
χ[−ξ,ξ ](y)ρ(y)χA(p + y)dm(y)

=
∫

[−1−ξ,1+ξ ]
χ[−ξ,ξ ](z − p)ρ(z − p)χA(z)dm(x) =

∫
A

ρ̂(z − p)dm(z),

where in the last line we used the change of variables z = p + y.
Item(3) follows from the definition. 	
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Weprove now a general result on sequences of absolutely continuous probabilitymeasures
with uniformly bounded densities.

Lemma 2.2.3 Let μn = fndm, n ∈ N be a sequence of absolutely continuous probability
measures such that:

• fn ∈ L∞(m) for all n
• there exists an interval [a, b] such that μn(R \ [a, b]) = 0, for all n,
• μn converges weakly to μ,
• there exists M > 0 such that || fn ||∞ ≤ M for all x ∈ [a, b], n ∈ N.

then μ is an absolutely continuous probability measure, with μ(R \ [a, b]) = 0.

Proof By Portmanteau theorem, weak convergence of μn to μ implies that for all open sets
A

μ(A) ≤ lim inf μn(A).

This implies that

μ(R \ [a, b]) ≤ lim inf μn(R \ [a, b]) = 0.

The fact that μ is a probability measure follows from definition of weak convergence.
Suppose now B is a measurable set; we claim that ifm is the Lebesgue measurem(B) = 0

implies μ(B) = 0.
Let B measurable, without loss of generality we can suppose B ⊆ [a, b], and let A be

any open set containing B; by weak convergence, Portmanteau theorem and the fact that
|| fn ||∞ ≤ M for all n we have that:

μ(B) ≤ μ(A) ≤ lim inf μn(A) = lim inf
∫
A
fndm ≤ M · m(A).

We recall that the Lebesgue measure m on R is outer regular, i.e., for all measurable sets
B we have that m(B) = inf{m(A) | A open, B ⊆ A}; taking the inf over all open sets A
containing B on the right side of the inequality above implies that μ(B) ≤ M · m(B) and
absolute continuity of μ. 	


Remark 2.2.4 The hypothesis that the fn are uniformly bounded is fundamental in the proof
above, and the theorem is false if it is not satisfied. An example is the sequence fn =
1/(2ξ)χ[−ξ,ξ ] · m which converges weakly to δ0.

Remark 2.2.5 This Lemma is a folklore result in measure theory [19]; in the provided link,
different proofs and a discussion of the result are provided.

We sketch another proof, found at the provided link, with a more functional analytic
approach: by classical results C∞([a, b]) is dense in L2([a, b]). We define a sequence of
functionals Tn(g) : C∞([a, b]) → R by Tn(g) = ∫

gdμn ; by weak convergence, for each
g ∈ C∞([a, b]) we can define T (g) := limn→+∞

∫
gdμn = ∫

gdμ.
We show now that, since the fn are uniformly bounded T can be extended to a functional

T : L2([a, b]) → R; this follows from the Cauchy–Schwarz inequality, since

|Tn(g)| = |
∫

g fndm| ≤ ||g||L2 || fn ||L2 ≤ ||g||L2

√
b − a · M,

123
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since the bound is uniform in n the functional T (g) can be extended to a bounded linear
functional on L2. By Riesz representation theorem, there exists an f ∈ L2([a, b]) such that

T (g) =
∫

g · f dm,

which implies that μ = f · m is absolutely continuos.

Lemma 2.2.6 Let μn be a sequence of probability measures on [−1, 1] weakly converging
to μ. Then ρ̂ ∗ μ̂n converges weakly to ρ̂ ∗ μ̂.

Proof By definition of weak convergence we have that for all φ Lipschitz on [−1, 1]we have
that

lim
n→+∞

∫ 1

−1
φdμn =

∫ 1

−1
φdμ.

Let φ be a Lipschitz continuous function on [−1 − ξ, 1 + ξ ], then, since ∫ ξ

−ξ
ρdm = 1

we have that ∣∣∣∣
∫

ρ̂(x + h − y)φ(y)dm(y) −
∫

ρ̂(x − y)φ(y)dm(y)

∣∣∣∣
=

∣∣∣∣
∫

ρ̂(z) (φ(x + h − z) − φ(x − z)) dm(z)

∣∣∣∣ ≤ L · h

where L is the Lipschitz constant of φ.
Now, for each φ Lipschitz on [−1 − ξ, 1 + ξ ] we have∫

φ(x)
∫

ρ̂(x − y)dμ̂n(y)dm(x) =
∫ ∫

φ(x)ρ̂(x − y)dm(x)dμ̂n(y),

by the inequality above φ ∗ ρ̂ is Lipschitz continuous and so is its restriction to [−1, 1];
therefore, for each φ Lipschitz on [−1 − ξ, 1 + ξ ] we have

lim
n→+∞

∫
φ(x)d(ρ̂ ∗ μ̂n)(x) = lim

n→+∞

∫ 1

−1
(ρ̂ ∗ φ)(x)dμn(x)

=
∫ 1

−1
(ρ̂ ∗ φ)(x)dμ(x) =

∫ 1+ξ

−1−ξ

φ(x)d(ρ̂ ∗ μ̂)(x).

	

We prove now the final result of this section, that shows that convolution with a bounded

variation kernel maps probability measures into probability measures which are absolutely
continuous with respect to Lebesgue.

Lemma 2.2.7 Let μ be a probability measure in [−1, 1], then ρ̂ ∗ μ̂ is a probability measure
on [−1 − ξ, 1 + ξ ], absolutely continuous with respect to Lebesgue.

Proof Recall from Definition 2.2.1 that ρ is a bounded variation function on [−ξ, ξ ] with∫ ξ

−ξ
ρdm = 1.
The proof follows from Lemma 2.2.3; let {−1− ξ = x0, . . . xn+1 = 1+ ξ} be a partition

of [−1 − ξ, 1 + ξ ] such that xi+1 − xi ≤ 2/n for all i = 0, . . . , n. Let

μn =
n∑

i=0

μ([xi , xi+1])δpi

123
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where pi = (xi+1+xi )/2 and δpi is theDirac-δmeasure centered at pi . Thenμn converges
weakly to μ, and ρ̂ ∗ μ̂n converges weakly to ρ̂ ∗ μ̂ by Lemma 2.2.6.

By Lemma 2.2.2 Item (2) and linearity of convolution we have that

ρ̂ ∗ μ̂n =
n∑

i=0

μ([xi , xi+1])ρ̂(x − pi ) · m,

which, for each n, is an absolutely continuous probability measure whose density is
uniformly bounded, i.e.,∣∣∣∣∣

n∑
i=0

μ([xi , xi+1])ρ̂(x − pi )

∣∣∣∣∣ ≤ ||ρ||L∞([−ξ,ξ ])
n∑

i=0

μ([xi , xi+1]) ≤ ||ρ||BV .

Then, by Lemma 2.2.3 we have that ρ̂∗μ̂ is an absolutely continuous probability measure.
	


2.3 Regularization Properties of Convolution on Densities

Lemma 2.3.1 Let f ∈ L1([−1, 1]) and let φ be a bounded variation function on [−ξ, ξ ];
then, their convolution

φ̂ ∗ f̂ (x) :=
∫ ∞

−∞
φ̂(x − y) f̂ (y)dy

is a bounded variation function with support in [−1 − ξ, 1 + ξ ], such that

Var[−1−ξ,1+ξ ](φ̂ ∗ f̂ ) ≤
(
Var[−ξ,ξ ](φ) + 2 sup

[−ξ,ξ ]
|φ(x)|

)
|| f ||L1([−1,1]).

Morever, if φ(x) ≥ 0 and
∫
[−ξ,ξ ] φ(x)dm(x) = 1, then ||φ̂ ∗ f̂ ||L1([−1−ξ,1+ξ ]) ≤

|| f ||L1([−1,1]).

Proof Let τx be the translation operator on functions, i.e., (τy φ̂)(x) = φ̂(x−y). By definition

Var[−ξ,ξ ](φ̂) = Var[y−ξ,y+ξ ](τy φ̂).

We first remark that by definition of φ̂ and f̂ , their convolution φ̂ ∗ f̂ is 0 outside [−1 −
ξ, 1 + ξ ].

We observe now that for any partition P of [−1 − ξ, 1 + ξ ] we have that
∫ 1

−1

∑
i

|φ̂(xi − y) − φ̂(xi+1 − y)|| f̂ (y)|dy ≤
∫

Var[y−ξ,y+ξ ](τy φ̂)| f̂ (y)|dy;

observing that τy φ̂ is 0 outside of [y − ξ, y + ξ ], and that∑
i

|φ̂(xi − y) − φ̂(xi+1 − y)| ≤ Var[y−ξ,y+ξ ](τy φ̂) ≤ Var[ξ,ξ ](φ) + 2 sup
[−ξ,ξ ]

|φ(x)|,

by definition of variation.
Therefore∫ ∑

i

|φ̂(xi − y) − φ̂(xi+1 − y)|| f̂ (y)|dy ≤ Var[−ξ,ξ ](φ̂)|| f ||L1([−1,1]) (1)
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remark that the fact that the left handside above is bounded will allow us to interchange
the summation and integral sign by Fubini–Tonelli theorem, and that on the right hand side
we have the variation of φ and the L1 norm of f , by Lemma 2.1.6.

For any partition P of [−1 − ξ, 1 + ξ ] we have that
∑
i

|
∫

φ̂(xi − y) − φ̂(xi+1 − y) f̂ (y)|dy ≤
∑
i

∫
|φ̂(xi − y) − φ̂(xi+1 − y)|| f̂ (y)|dy

exchanging the summation and integral sign and using (1) we obtain the thesis.
Suppose now

∫
[−ξ,ξ ] φ(x)dm(x) = 1, by the argument aboveweknow that the convolution

integral is bounded so we can exchange the order of integration; remembering that f̂ extends
f by 0 outside [−1, 1] we have then:∫ 1+ξ

−1−ξ

∣∣∣∣
∫ ξ

−ξ

φ̂(y) f̂ (x − y)dm(y)

∣∣∣∣ dm(x) ≤
∫ ξ

−ξ

φ̂(y)
∫ 1+ξ

−1−ξ

| f̂ (x − y)|dm(x)dm(y)

=
∫ ξ

−ξ

φ̂(y)|| f ||L1([−1,1])dm(y) = || f ||L1([−1,1]).

	

Remark 2.3.2 A useful characterization of bounded variation functions is the following
approximation by smooth functions result, [3, Theorem 3.9]. A function u ∈ L1([a, b])
is of bounded variation if and only if there exists a sequence un in C∞([a, b]) converging to
u in L1([a, b]) and such that

lim
n→+∞

∫ b

a
|u′

n |dm ≤ V < +∞
The smallest possible constant V is the variation of u. All of the proofs about regularity

in our paper can be redone by using this characterization.

2.4 Definition of the Annealed Transfer Operator

Definition 2.4.1 Let T : [−1, 1] → [−1, 1] be a measurable map. The map T induces an
operator on L : SM([−1, 1]) → SM([−1, 1]) where SM([−1, 1]) is the space of signed
measures on [−1, 1], defined in the following way: if μ ∈ SM([−1, 1]) then

Lμ(A) = μ(T−1A)

for all measurable sets A. This operator is called the pushforward operator associated to
T or the transfer operator associated to T .

The space of Lebesgue absolutely continuous measures is a vector subspace of
SM([−1, 1]); if T is non-singular with respect to Lebesgue then L preserves this subspace of
absolutely continuous measures and induces an operator from L1([−1, 1]) into itself called
the Perron–Frobenius operator. We will denote by P the Perron–Frobenius operator.

Remark 2.4.2 Given an absolutely continuous probability measure μ = f · m, with density
f , P f is the Radon–Nikodym derivative of Lμ with respect to m [20].

Remark 2.4.3 Bydefinition, for anymeasurable functionφ, the pushforward operator satisfies
the following duality formula ∫ 1

−1
φd(Lμ) =

∫ 1

−1
φ ◦ Tdμ.
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The following is a collection of basic properties of the Perron–Frobenius operator P , that
are proved in the first pages of [20], whose proof we omit.

Lemma 2.4.4 [20] The following statements are true.

(1) P f is the unique function in L1([−1, 1]) such that for all test function in L∞(m):
∫ 1

−1
φ · P f dm =

∫ 1

−1
φ ◦ T · f dm,

(2) P is a positive linear operator, and ||P||L1([−1,1]) = 1,
(3) if f is a density, then P f is a density.

Definition 2.4.5 We will call boundary condition one of the two following maps:

• πP (x) = x mod 2, called a periodic boundary conditions,
• πR(x) = (mini∈Z |(x + 1) − 4i |) − 1, called a reflecting boundary conditions.

When the choice of the boundary condition is unimportant we will denote a boundary con-
dition by π . We will denote by π∗ the push-forward map acting on measures by

(π∗μ)(A) = μ(π−1(A)).

Remark 2.4.6 In the definition of πP above we choose as representatives of the equivalence
relation classes the points in (−1, 1].
Remark 2.4.7 By abuse of notationπ∗ will denote also themap thatπ∗ it induces on densities,
i.e, if μ has density g, then π∗(g) is the density of π∗μ; refer to Lemma 2.4.10 for the
conditions under which this map is well defined and their proof.

Remark 2.4.8 The map π∗ is well defined only on measures μ on R such that there exists an
interval [a, b] such that

μ(R \ [a, b]) = 0;
by Lemma 2.2.7 this is true for all the measures ρ̂ ∗ μ̂ in our treatment.

Remark 2.4.9 Let π∗ be the map that associates to any φ bounded and measurable on [−1, 1]
its extension φ̂ such that

φ̂(x) = φ(π(x)),

for a boundary condition π .
If μ is a measure on R such that there exists an interval [a, b] such that

μ(R \ [a, b]) = 0;
we have that ∫

φdπ∗μ =
∫

π∗(φ)dμ.

Lemma 2.4.10 Let μ = f · m be an absolutely continuous probability measure on R, with
density f such that f ≡ 0 inR\[a, b]. For any boundary condition π , π∗(μ) is an absolutely
continuous probability measure on [−1, 1].

Moreover if f is of bounded variation, then π∗μ has a bounded variation density.
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Proof Let πi be the restriction of π to the interval Ii = [−1 + 2i, 1 + 2i]; by definition, πi

is one to one and affine. Let g be the density of μ and gi its restriction to Ii , then π∗μ has
density g̃ := ∑

i gi (π
−1
i (x)), where this sum is well defined since g has bounded support.

Then

||g̃||L1([−1,1]) ≤
∑
i

||gi ||L1(Ii ) = ||g||L1([a,b]).

If g is of bounded variation, then:

Var[−1,1](g̃) ≤
∑
i

VarIi (gi ) ≤ Var[a,b](g).

	

Definition 2.4.11 Let ρ a bounded variation function such that ρ(x) ≥ c > 0 for all x ∈
[−1, 1], ρ(x) = 0 outside [−1, 1] and ∫ 1

−1 ρ(x)dm = 1; we will call such a function a
mother noise kernel.

In the following, define

ρξ (x) := 1

ξ
ρ

(
x

ξ

)
.

We will call ξ the amplitude of the noise.

Definition 2.4.12 Let T : [−1, 1] → [−1, 1] be a measurable non-singular function; a
random dynamical system with noise amplitude ξ with initial condition x0 is a sequence of
random variables

X0 = x0, Xn+1 = π(T (Xn) + �ξ)

where �ξ is a random variable with probability density ρξ and π is either a periodic or
reflecting boundary condition.

Definition 2.4.13 The annealed transfer operator Lξ associated to the system with noise is
defined by

Lξμ = π∗(ρ̂ξ ∗ L̂μ)

where π∗ can be either periodic or reflecting boundary conditions.

Lemma 2.4.14 The operator Lξ induces an operator Pξ acting on densities such that

Pξ f = π∗(ρ̂ξ ∗ P̂ f ).

Proof Let μ = f · m be an absolutely continuous probability measure with density f .
By Definition 2.4.1 we have that

Lμ = P f · m.

By Lemma 2.2.7, we have that

ρ̂ξ ∗ L̂μ = (ρ̂ξ ∗ P̂ f ) · m,

where the Lebesgue measure on the right handside is defined on R. Remark that by 2.2.7 the
support of ρ̂ ∗ P̂ f is contained in [−1 − ξ, 1 + ξ ].
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Referring to Remark 2.4.7, we have that

π∗(ρ̂ξ ∗ L̂μ) = π∗(ρ̂ξ ∗ P̂ f ) · m
where on the right handside m is defined on [−1, 1].

Remark that by Lemmas 2.3.1 and 2.4.10, and the fact that P sends densities in densities,
we have that Pξ is a well defined operator on densities. 	


Remark 2.4.15 It is worth remarking that Lξ δy = π∗(ρ̂ξ (x−T (y))·m(x)), which, by Lemma
2.2.2, Item (2) is absolutely continuous with respect to Lebesgue, with bounded variation
density.

Definition 2.4.16 Let μξ be a fixed point for Lξ , i.e.,

Lξμξ = μξ .

We will call μξ a stationary measure for μξ .

Remark 2.4.17 If Pξ is the Perron–Frobenius operator operating on densities, and fξ is a
fixed point of this operator

Pξ fξ = fξ

then μξ = fξ · m, where m is the Lebesgue measure is a stationary measure.

The following theorem is a consequence of Birkhoff ergodic theorem and the skew product
view of random dynamical systems, we refer to [25], and allows us to connect the notion of
stationary measure and the notion of random dynamical system.

Theorem 2.4.18 (Birkhoff Ergodic Theorem) Suppose Lξ has a unique stationary measure
μξ , let φ ∈ L1(μξ ). Then, for μξ almost every initial condition x0 and with probability one

lim
n→+∞

1

n

n−1∑
i=0

φ(Xi ) =
∫

φdμξ .

Remark 2.4.19 We state the ergodic theorem in this weaker form, requiring uniqueness of
the stationary measure to simplify the treatment and avoid to define the notion of ergodicity
for stationary measures.

Sketch of proof It is possible to associate to our random dynamical systemwith additive noise
a skew product F : � × [−1, 1] → � × [−1, 1], where � = [−ξ, ξ ]N, σ : � → � is the
shift map and, for ω ∈ �, x ∈ [−1, 1] the skew product is defined as

F(ω, x) = (σω, π(T (x) + y)),

where y = (ω)0 is the first entry of ω, and π is the boundary condition.
Denote by ν the product measure induced by ρξ · m on �, following the proof of [25,

Proposition 5.4] verbatim, we can see that μξ is stationary if and only if ν × μξ is invariant
for F ;
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We show the “if” claim; let ψ(ω, x) be a measurable function on � × [−1, 1], and let
φ(x) = ∫

ψ(ω, x)dν(ω); then
∫ ∫

ψ(ω, x)dν(ω)dμξ (x) =
∫

φ(x)dμξ (x)

=
∫

φ(x)dLξμξ (x) =
∫ ∫

φ(π(T (x) + y))ρξ (y)dm(y)dμξ (x)

=
∫ ∫ ∫

ψ(ω, π(T (x) + y))dν(ω)ρξ (y)dm(y)dμξ (x), (2)

since the product measure ν is invariant for the shift and by definition

ν = (ρξ · m) ⊗ ν,

we have that (2) is equal to
∫ ∫

ψ(σ(ω), π(T (x) + y))dν(ω)dμξ (x) =
∫ ∫

ψdLF (ν × μ)

We show the “only if” claim; let φ : [−1, 1] → R be bounded and measurable, define
ψ(ω, x) = φ(x), then, recalling Remark 2.4.9 we have

∫
φ(x)d(Lξμξ )(x) =

∫ ∫
φ(π(T (x) + y))ρ̂ξ (y)dm(y)dμξ (x)

=
∫ ∫

ψ(ω, π(T (x) + y))ρ̂ξ (y)dm(y)dμξ (x)

=
∫ ∫

ψ(σω, π(T (x) + y))ρ̂ξ (y)dm(y)dμξ (x)

=
∫

ψ(ω, x)dLF (ν × μξ )

=
∫ ∫

ψ(ω, x)d(ν × μξ ) =
∫

φ(x)dμξ .

By [25, Theorem 5.13] and unicity of μξ we get that μξ is an ergodic stationary measure
(we refer to [25] Sect. 5.3 for a definition), therefore ν × μξ is an ergodic invariant measure
for F and the statement follows. 	


2.5 Regularization Properties of the Annealed Transfer Operator

The ergodic theorem tells us that if we want to understand the statistical properties of a
random dynamical system, we need to prove uniqueness of its stationary measure and study
its properties. Our plan is to show that under some assumptions the random dynamical system
admits a unique stationary measure, with density of bounded variation.

Corollary 2.5.1 The operator Pξ is a bounded operator from L1 to BV , such that

Var[−1,1](Pξ f ) ≤
(
Var[−ξ,ξ ](ρξ ) + 2 sup

[−ξ,ξ ]
|ρξ (x)|

)
|| f ||L1([−1,1]),

which in turn implies that Var[−1,1](Pξ f ) ≤ 3||ρξ ||BV ([−ξ,ξ ])|| f ||L1([−1,1]).
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Proof This follows from Lemma 2.3.1 and the proof of Lemma 2.4.10, i.e.,

Var[−1,1](Pξ f ) = Var[−1,1](π∗(ρ̂ξ ∗ P̂ f ))

≤ Var[−1−ξ,−1+ξ ](ρ̂ξ ∗ P̂ f )

≤
(
Var[−ξ,ξ ](ρξ ) + 2 sup

[−ξ,ξ ]
|ρξ (x)|

)
||P f ||L1([−1,1])

and the fact that ||P||L1→L1 ≤ 1. As in many other occasions, we use that
||ρξ ||BV ([−ξ,ξ ]) ≥ sup[−ξ,ξ ] |ρξ (x)| to give the following bound(

Var[−ξ,ξ ](ρξ ) + 2 sup
[−ξ,ξ ]

|ρξ (x)|
)

≤ 3||ρξ ||BV ([−ξ,ξ ]).

	

Remark 2.5.2 In particular, if f is a density (Definition 2.1.2), we have that

Var[−1,1](Pξ f ) ≤ Var[−ξ,ξ ](ρξ ) + 2 sup
[−ξ,ξ ]

|ρξ (x)|.

Corollary 2.5.3 (Big noise amplitude limit) Let fξ be a density which is a fixed point of Pξ ;
then

Var[−1,1]( fξ ) ≤
(
Var[−ξ,ξ ](ρξ ) + 2 sup

[−ξ,ξ ]
|ρξ (x)|

)
|| fξ ||L1([−1,1])

=
(
Var[−ξ,ξ ](ρξ ) + 2 sup

[−ξ,ξ ]
|ρξ (x)|

)
.

Moreover this implies that

lim
ξ→+∞Var[−1,1]( fξ ) = 0,

and therefore

lim
ξ→+∞ || fξ − 1

2
||BV ([−1,1]) = 0.

Proof This follows from Corollary 2.5.1:

Var[−1,1]( fξ ) = Var[−1,1](Pξ fξ ) ≤
(
Var[−ξ,ξ ](ρξ ) + 2 sup

[−ξ,ξ ]
|ρξ (x)|

)
.

The second statement follows from

Var[−1,1]( fξ ) ≤
(
Var[−ξ,ξ ](ρξ ) + 2 sup

[−ξ,ξ ]
|ρξ (x)|

)

= 1

ξ

(
Var[−1,1](ρ) + 2 sup

[−1,1]
|ρ(x)|

)
,

so

lim
ξ→+∞Var[−1,1]( fξ ) = 0,

which implies the thesis. 	


123



   22 Page 18 of 41 I. Nisoli

Remark 2.5.4 Remark that Corollary 2.5.1 and 2.5.3 do not depend on our choice of boundary
condition.

Remark 2.5.5 Corollary 2.5.3 tells us that for any bounded variation noise kernel, as the ampli-
tude of the noise increases, the orbits of the random dynamical system distribute themselves
uniformly in the interval [−1, 1].
Definition 2.5.6 Let

U0 = { f ∈ L1([−1, 1]) |
∫

f dm = 0}.

We call U0 the vector subspace of average 0 measures; by abuse of notation we denote by
U0 also its intersection with BV ([−1, 1]). We say Pξ contracts the space of average zero
functions in L1 if

||Pn
ξ |U0 ||L1→L1 ≤ Cθn

for constants C > 0, 0 < θ < 1. We say Pξ contracts the space of average zero
functions in BV if

||Pn
ξ |U0 ||BV→BV ≤ C̃ θ̃n

for constants C̃ > 0, 0 < θ̃ < 1.

Lemma 2.5.7 The operator Pξ contracts the space of average zero functions in L1 if and
only if it contracts the space of average of average zero functions in BV .

Proof By Lemma 2.3.1, we have that

||Pξ ||L1→BV ≤ 3||ρξ ||BV ([−ξ,ξ ]).

Suppose Pξ contracts the space of average 0 functions in BV . Let f be an average 0 function
in L1, then

||Pn
ξ f ||L1 ≤ ||Pn

ξ f ||BV ≤ ||Pn−1
ξ |U0 ||BV→BV 3||ρξ ||BV ([−ξ,ξ ])|| f ||L1 ,

which implies that

||Pn
ξ |U0 ||L1 ≤ 3C̃ ||ρξ ||BV ([−ξ,ξ ])

θ̃
θ̃n,

i.e., Pξ contracts the space of average 0 functions in L1. If Pξ contracts the space of average
0 functions in L1 we have that, if f is an average 0 function in BV

||Pn
ξ f ||BV ≤ 3||ρξ ||BV ([−ξ,ξ ])||Pn−1

ξ f ||L1→L1 ≤ 3||ρξ ||BV ([−ξ,ξ ]) · Cθn−1|| f ||L1;
since || f ||L1 ≤ || f ||BV this implies that

||Pn
ξ |U0 ||BV ≤ 3||ρξ ||BV ([−ξ,ξ ]) · C

θ
θn,

i.e., that Pξ contracts the space of average functions in BV . 	

Lemma 2.5.8 If Pξ contracts the space of average 0 functions in L1 (or equivalently in BV ),
then Lξ has a unique stationary measure.
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Proof We prove by contradiction that the stationary measure is unique: letμ and ν be station-
ary measures. Since Lξμ = μ and Lξ ν = ν we have that μ and ν are absolutely continuous
with respect to Lebesgue, with densities f and g respectively. Now, Pξ f = f and Pξ g = g,
and, since Pξ contracts the space of average 0 measures, we have that for any n

|| f − g||L1 = ||Pn
ξ ( f − g)||L1 ≤ Cθn || f − g||L1 .

Take N such that CθN < 1, the inequality above then implies that || f − g||L1 = 0, which
in turn implies that μ = ν. 	


We will now generalize of a result in [11]: if for some noise amplitude the operator
contracts the space of average 0 functions in L1, then for all bigger amplitudes the annealed
operators also contracts the space of average 0 functions in L1. We start by an auxiliary
Lemma and Corollary.

Lemma 2.5.9 Let ρ be a mother noise kernel, ρξ its rescaling, μ be a probability measure
on [−1, 1], μ̂ its extension to R by μ̂(A) = μ(A∩ [−1, 1]), then, for any measurable subset
A and for each ξ̂ > ξ we have that

π∗(ρ̂ξ̂
∗ μ̂)(A) ≥ c

||ρ||BV
ξ

ξ̂
π∗(ρ̂ξ ∗ μ̂)(A).

Proof We remember that ρξ (x) = 1
ξ
ρ(x/ξ) and that ρ(x) ≥ c > 0 for all x ∈ [−1, 1] by

Definition of 2.4.11. Therefore

ρξ (x) ≥ c

ξ

for all x ∈ [−ξ, ξ ].
We have that

π∗(ρ̂ξ̂
∗ μ̂)(A) =

∫
[−ξ̂ ,ξ̂ ]

ρ̂
ξ̂
(y)μ̂(A − y)dm(y);

by the observation above we have that∫
[−ξ̂ ,ξ̂ ]

ρ̂
ξ̂
(y)μ̂(A − y)dm(y) ≥ c

ξ̂

∫
[−ξ̂ ,ξ̂ ]

μ̂(A − y)dm(y).

Now, since

||ρξ ||∞ ≤ ||ρξ ||BV ≤ ||ρ||BV
ξ

we have that

π∗(ρ̂ξ ∗ μ̂)(A) ≤ ||ρ||BV
ξ

∫
[−ξ,ξ ]

μ̂(A − y)dm(y).

Since ξ̂ > ξ and μ̂(A − y) is nonnegative for all y we have∫
[−ξ̂ ,ξ̂ ]

ρ̂
ξ̂
(y)μ̂(A − y)dm(y) ≥ c

ξ̂

∫
[−ξ̂ ,ξ̂ ]

μ̂(A − y)dm(y) ≥
c

ξ̂

∫
[−ξ,ξ ]

μ̂(A − y)dm(y) ≥ c

||ρ||BV
ξ

ξ̂

∫
[−ξ,ξ ]

ρ̂ξ (y)μ̂(A − y)dm(y).

and the thesis follows. 	
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Corollary 2.5.10 Let ν be a probability measure in [−1, 1]. Then, letting τ = c
||ρ||BV

ξ

ξ̂
, we

have that

L
ξ̂
μ(A) ≥ τ Lξμ(A),

for all measurable subset A.

Proof Use Lemma 2.5.9 with μ = Lν. 	

We can now prove that mixing for some noise amplitude implies mixing for all bigger

noise amplitudes.

Lemma 2.5.11 Suppose Pξ contracts the space of average 0 functions in L1 for ξ > 0; then
P

ξ̂
contracts the space of average 0 functions for any ξ̂ > ξ .

Proof By Lemma 2.2.2, Item (2), we know that Lξ δx is an absolutely continuous probability
measure and by Corollary 2.5.10 we have that for any measurable subset A, and any x ∈
[−1, 1]:

(Lm
ξ̂
δx )(A) ≥ τm(Lm

ξ δx )(A).

By hypothesis, Pξ is contracting the space of average 0 functions in L1, so that, for any
x ∈ [−1, 1], if fξ is the density of the stationary measure and g is the density of Lm

ξ δx , we
have that

|| fξ − Pm−1
ξ g||L1 = ||Pm−1

ξ ( fξ − g)||L1 ≤ 2Cθm−1,

which in turn implies that for any measurable subset A

|(Lm
ξ δx )(A) − μξ (A)| ≤ 2Cθm−1.

Let N such that 2CθN−1 < 1, and let

νN = τ N (1 − 2CθN−1)μξ ,

then

(LN
ξ̂

δx )(A) ≥ νN (A)

for all x and for all measurable A.
Remember that, if μ and ν are absolutely continuous measures with respect to Lebesgue,

with densities f and g respectively, we have that the total variation norm for measures (we
refer to [18] for its definition) is related by the L1 norm by the following equation:

||μ − ν||T V = 1

2
|| f − g||L1 .

Then, by [18, Theorem 16.2.4] and the fact that Lξ maps measure into absolutely contin-
uous measures, i.e., item 2 in Lemma 2.2.7, we have that

||Pn
ξ̂
|U0 ||L1 ≤ 4ρ�n/N�;

where ρ = 1 − τ N (1 − 2CθN−1). 	

Lemma 2.5.12 There exists C > 0, 0 < θ < 1 such that for all ξ ≥ 1

||Pn
ξ |U0 ||L1 ≤ Cθn .
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Proof Recall that ρξ (x) = 1
ξ
ρ(x/ξ). Therefore, for ξ in [k, k + 1), where k is a positive

natural number, we have that

ρξ (x) ≥ c

k + 1
,

and we have that for all x ∈ [−1, 1], due to boundary conditions,

Lξ δx (A) ≥ k

k + 1
c · m(A).

This implies that for all ξ ≥ 1, we have that

Lξ δx (A) ≥ c

2
· m(A).

By [18, Theorem 16.2.4] and the fact that Lξ maps measure into absolutely continuous
measures, i.e., Lemma 2.2.7, we have that

||Pn
ξ |U0 ||L1 ≤ 4ρn;

where ρ = 1 − c/2. 	

Corollary 2.5.13 Suppose Pξ contracts the space of average 0 functions in L1 for ξ > 0;
then there exists C > 0, 0 < θ < 1 such that

||Pn
ξ̂
|U0 ||L1 ≤ Cθn

for all ξ̂ > ξ .

Proof Using a compactness argument, for all ξ̂ in (ξ, 1] we have a uniform bound from
Lemma 2.5.11; for ξ > 1 we have a uniform bound from Lemma 2.5.12. 	


2.6 Lr Continuity of the Stationary Measure with Respect to the Noise Size

In this subsection we prove continuity in Lr ([−1, 1]) of the stationary measure with respect
to the noise size at a fixed noise size ξ > 0.

Lemma 2.6.1 Suppose that Pξ contracts the space of average 0 functions in L1. More-
over,suppose that there exists a 0 < ε < ξ such that for all ξ̂ in (ξ − ε, ξ + ε) the operator
P

ξ̂
has a unique fixed density f

ξ̂
.

Then

lim
ξ̂→ξ

|| f
ξ̂

− fξ ||L1 = 0.

Proof Abounded variation function on the interval has a countable set of discontinuity points,
since it can be written as the difference of two monotone functions [3].

Moreover, a bounded variation function is bounded; fix ξ and let �ξ be the set of discon-
tinuities of ρξ . We claim that

lim
ξ̂→ξ

||ρ̂
ξ̂

− ρ̂ξ ||L1 = 0,

where ρ̂
ξ̂
, ρ̂ξ are the extensions of ρ

ξ̂
and ρξ respectively to R.
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Observe that

||ρ̂
ξ̂

− ρ̂ξ ||L1 =
∫

[−ξ̂ ,ξ̂ ]\�ξ

|ρ̂
ξ̂
(x) − ρ̂ξ |dm ≤ max

(
1

ξ̂
,
1

ξ

)
||ρ||BV .

By the dominated convergence theorem we have then that

lim
ξ̂→ξ

∫
[−ξ̂ ,ξ̂ ]\�ξ

|ρ̂
ξ̂
(x) − ρ̂ξ (x)|dm =

∫
[−ξ̂ ,ξ )∪(ξ,ξ̂ ]

lim
ξ̂→ξ

|ρ̂
ξ̂
(x)|dm+

∫
[−ξ,ξ ]\�ξ

lim
ξ̂→ξ

|ρ̂
ξ̂
(x) − ρ̂ξ (x)|dm

which goes to 0 as ξ̂ goes to ξ .
By L1 continuity of the convolution this in turn implies that

lim
ξ̂→ξ

||P
ξ̂

− Pξ ||L1→L1 = 0,

and

|| fξ − f
ξ̂
||L1 ≤ ||PN

ξ ( fξ − f
ξ̂
)||L1 + ||PN

ξ f
ξ̂

− PN
ξ̂

f
ξ̂
||L1 .

Since ||Pi
ξ |U0 ||L1 < Cθ i where 0 < θ < 1, there exists a positive N such thatCθN < 1/2,

since fξ − f
ξ̂
is an average 0 function in L1 we have that

|| fξ − f
ξ̂
||L1 ≤ 1

2
|| fξ − f

ξ̂
||L1 + ||PN

ξ f
ξ̂

− PN
ξ̂

f
ξ̂
||L1 ,

and we estimate the right hand side by telescopizing the difference of powers:

||PN
ξ f

ξ̂
− PN

ξ̂
f
ξ̂
||L1 ≤

N−1∑
k=0

||Pk
ξ |U0 ||L1→L1 ||Pξ − P

ξ̂
||L1→L1 ||PN−k−1

ξ̂
f
ξ̂
||L1

≤
N−1∑
k=0

||Pk
ξ |U0 ||L1→L1 ||Pξ − P

ξ̂
||L1→L1 || fξ̂ ||L1

≤ C

1 − θ
||Pξ − P

ξ̂
||L1→L1;

where we used that || f
ξ̂
||L1 = 1. This implies that

|| fξ − f
ξ̂
||L1 ≤ 2C

1

1 − θ
||Pξ − P

ξ̂
||L1→L1

Taking the limit as ξ̂ → ξ we conclude the proof. 	

Remark 2.6.2 The same argument can be used to prove right continuity of the stationary
measure in L1. The main difference is that we can drop the hypothesis of the uniqueness of
the stationary measure since by Corollary 2.5.13 the contraction of the space of average 0
functions at ξ implies uniform contraction for all ξ̂ ≥ ξ , so the uniqueness of f

ξ̂
follows.

Remark 2.6.3 Lemma 2.6.1 proves the continuity at ξ in L1 norm of the stationary density if
the operator Pξ is contracting the space of average 0 measures and the stationary measure is
unique in a neighborhood of ξ .
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Even if we have uniform contraction rates, we can only prove continuity in L1 of the
stationary density as a function of ξ .

More regular noise kernel allow us to prove stronger regularity of fξ as a function of ξ ,
which reflects in stronger regularity of the Birkhoff averages of observables as a function of
ξ .

Corollary 2.6.4 Suppose that Pξ contracts the space of average 0 functions in L1. More-
over,suppose that there exists a 0 < ε < ξ such that for all ξ̂ in (ξ − ε, ξ + ε) the operator
P

ξ̂
has a unique fixed density f

ξ̂
.

Then, for any 1 < r < +∞
lim
ξ̂→ξ

|| f
ξ̂

− fξ ||Lr = 0.

Proof Recall that if fξ is a fixed point of Pξ with || fξ ||L1 = 1 we have that

|| fξ ||BV = ||Pξ fξ ||BV ≤ ||Pξ ||L1→BV || fξ ||L1 ≤ 3||ρξ ||BV .

The BV norm bounds from above the L∞-norm, so

|| fξ − f
ξ̂
||∞ ≤ 6

||ρ||BV
ξ − ε

.

Therefore, fξ − f
ξ̂
belongs to L1 ∩ L∞ and by the classical L p interpolation inequality

we have that

|| fξ − f
ξ̂
||Lr ≤

(
|| fξ − f

ξ̂
||L1

)1/r ·
(
|| fξ − f

ξ̂
||L∞

)1−1/r
.

Therefore,

lim
ξ̂→ξ

|| fξ − f
ξ̂
||Lr ≤

(
6
||ρ||BV
ξ − ε

)1−1/r

lim
ξ̂→ξ

(
|| fξ − f

ξ̂
||L1

)1/r = 0.

	

Corollary 2.6.5 Let φ ∈ L p([−1, 1]), with p > 1; suppose there exists a ξ0 such that Pξ0

contracts the space of average 0 functions in BV or equivalently L1. Then, the function

Aφ(ξ) =
∫ 1

−1
φdμξ

is well defined and continuous for all ξ ≥ ξ0.

Proof By Lemma 2.5.11 we have that Pξ contracts the space of average 0 functions in BV for
all ξ ≥ ξ0 This implies by Lemma 2.5.8 that for each ξ ≥ ξ0 there exists a unique stationary
measure μξ with density fξ in BV . By Lemma 2.6.4, fixing ε < ξ − ξ0 and letting q > 0
be such that 1/q + 1/p = 1 we have that, for ξ̂ ∈ (ξ − ε, ξ + ε)

lim
ξ̂→ξ

|
∫ 1

−1
φ fξdm −

∫ 1

−1
φ f

ξ̂
dm| ≤ lim

ξ̂→ξ

||φ||L p || fξ − f
ξ̂
||Lq = 0

which implies the continuity of Aφ for all ξ > ξ0. Theproof of 2.6.1 canbe redoneverbatim
for right continuity at ξ0 as explained in remark 2.6.2, which implies right continuity at ξ0
and the thesis. 	
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Corollary 2.6.6 Let φ ∈ L1([−1, 1]); suppose there exists an 0 < ξ0 < +∞ such that Pξ0

contracts the space of average 0 functions in BV or equivalently L1. Then, if

Aφ(ξ) =
∫ 1

−1
φdμξ

we have that

lim
ξ→+∞ Aφ(ξ) =

∫ 1

−1
φ
1

2
dm.

Proof As in Corollary 2.6.5 the function is well defined for all ξ ≥ ξ0. We have that

lim
ξ→+∞ |

∫ 1

−1
φ fξdm −

∫ 1

−1
φ
1

2
dm| ≤ lim

ξ→+∞ ||φ||L1 || fξ − 1

2
||L∞ = 0,

recalling that the BV norm bounds from above the L∞ norm, the thesis follows from
Corollary 2.5.3 . 	


2.7 Continuity with Respect to the Base Dynamic T

To study the behavior as the base dynamic varies, we will use the following arguments by
M. Monge, that was proved for a version of [11].

Definition 2.7.1 A piecewise continuous map T on [−1, 1] is a function T : [−1, 1] →
[−1, 1] such that there is partition {Ii }1≤i≤k of [−1, 1] made of intervals Ii such that T has a
continuous extension to the closure Īi of each interval. We call this partition the continuity
partition of T .

If two piecewise continuous maps T1 and T2 share the same continuity partition we define

||T1 − T2||∞ = max
i

sup
x∈Ii

|T1(x) − T2(x)|.

Remark 2.7.2 Remark that a piecewise continuous map is uniformly continuous when
restricted to each Ii in its continuity partition.

Remark 2.7.3 The condition that two maps share the same continuity partition is used to
generalize the sup distance on continuous maps to piecewise continuous maps; as observed
by one of the referees the arguments in the rest of the section do not depend strictly on it but
the treatment is easier if we assume it.

Definition 2.7.4 The Wasserstein–Kantorovich distance of two probability measures is
defined as

W (μ, ν) = sup
Lip(φ)≤1,||φ||∞=1

∣∣∣∣
∫

φdμ −
∫

φdν

∣∣∣∣
Remark 2.7.5 We refer to [11] for the properties of theWasserstein–Kantorovich distance we
use. It is worth observing that

W (δp, δq) = |p − q|.
We now give a proof of [11, Lemma 51], starting by proving another property of bounded

variation functions.
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Lemma 2.7.6 Let φ be a bounded variation function on [a, b], zero outside of [a, b]. Let τh
be the translation operator τh(φ)(x) = φ(x + h). Then

||τhφ − φ||L1([a−h,b+h]) ≤ h

(
Var[a,b](φ) + 4 sup

[a,b]
|φ(x)|

)
.

Proof Without loss of generality, suppose h > 0, the negative case is analogous.
We start by observing that

||τh(φ) − φ||L1([a−h,b+h])

=
∫ a

a−h
|φ(x + h)|dx +

∫ b−h

a
|φ(x + h) − φ(x)|dx +

∫ b

b−h
|φ(x)|dx

≤
∫ b−h

a
|φ(x + h) − φ(x)|dx + 2 sup

[a,b]
|φ(x)| · h.

Let now N be the biggest integer such that Nh ≤ b − h − a; then, the intervals Ii =
[a + ih, a + (i + 1)h] for i = 0, . . . , N − 1, and J = [a + Nh, b − h] are a partition of
[a, b − h]; remark that m(J ) < h. Then

∫ b−h

a
|φ(x + h) − φ(x)|dx =

∑
i

∫
Ii

|φ(x + h) − φ(x)|dx +
∫
J
|φ(x + h) − φ(x)|dx

≤
N−1∑
i=0

∫ h

0
|φ(a + (i + 1)h + z) − φ(a + ih + z)|dz + 2 sup

[a,b]
|φ(x)| · h,

where on each Ui we used the change of coordinates x = a + ih + z. Now, we have that

∫ h

0

∑
i

|φ(a + (i + 1)h + x) − φ(a + ih + x)|dx ≤
∫ h

0
Var[a+x,b+x](τxφ)dx .

since the variation is translation invariant, we have then that

∫ b−h

a
|φ(x + h) − φ(x)|dx ≤

(
Var[a,b](φ) + 2 sup

[a,b]
|φ(x)|

)
· h

Summarizing, using the fact that φ is zero outside of [a, b], we have

||τh(φ) − φ||L1([a−h,b+h]) ≤
(
Var[a,b](φ) + 4 sup

[a,b]
|φ(x)|

)
h.

	


Lemma 2.7.7 Let φ be a bounded variation function on [a, b], zero outside of [a, b], and let
ψ ∈ L∞(R). Then, their convolution φ ∗ ψ is a Lipschitz function with Lipschitz constant
bounded above by

(
Var[a,b](φ) + 4 sup[a,b] |φ(x)|) ||ψ ||∞.
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Proof This follows from the definition of convolution

|φ ∗ ψ(x + h) − φ ∗ ψ(x)| =
∣∣∣∣
∫
R

(φ(x + h − y) − φ(x − y)) ψ(y)dy

∣∣∣∣
≤ ||ψ ||L∞

∫
R

|φ(x + h − y) − φ(x − y)| dy = ||ψ ||L∞||τh(τxφ) − τxφ||L1(R)

= ||ψ ||L∞||τh(φ) − φ||L1([a−h,b+h]) ≤ ||ψ ||L∞

(
Var[a,b](φ) + 4 sup

[a,b]
|φ(x)|

)
h.

where we used the fact that φ is 0 outside [a, b] and invariance of the L1 norm by τx . 	

Lemma 2.7.8 Let now μ and ν be probability measures on [−1, 1]; as in Lemma 2.2.7 we
have that ρ̂ξ ∗ μ̂ and ρ̂ξ ∗ ν̂ are absolutely continuous with respect to Lebesgue, let f and g
be their densities. Then

|| f − g||L1([−1−ξ,1+ξ ]) ≤
(
Var(ρξ ) + 4 sup

[−ξ,ξ ]
|ρξ (x)|

)
W (μ, ν) ≤ 5||ρξ ||BVW (μ, ν).

Proof Recall that f and g are 0 outside [−1− ξ, 1+ ξ ]; for each ψ ∈ L∞(R) we have that∣∣∣∣
∫

ψ( f − g)dx

∣∣∣∣ =
∣∣∣∣
∫

ψd(ρ̂ξ ∗ μ̂) −
∫

ψd(ρ̂ξ ∗ ν̂)

∣∣∣∣
=

∣∣∣∣
∫ ∫

ψ(x)ρ̂ξ (x − y)dm(x)dμ̂(y) −
∫ ∫

ψ(x)ρ̂ξ (x − y)dm(x)d ν̂(y)

∣∣∣∣
=

∣∣∣∣
∫

(ψ ∗ ρ̂ξ )dμ̂ −
∫

(ψ ∗ ρ̂ξ )d ν̂

∣∣∣∣ .
By Lemma 2.7.7 and definition of Wasserstein distance we have then

∣∣∣∣
∫

ψ( f − g)dx

∣∣∣∣ ≤
(
Var[−ξ,ξ ](ρξ ) + 4 sup

[−ξ,ξ ]
|ρξ (x)|

)
||ψ ||L∞ · W (μ, ν),

which in turn implies the thesis by taking as ψ the function with value 1 if f (x) ≥ g(x) and
value −1 if f (x) < g(x). 	

Remark 2.7.9 The constants in the preceding lemmas are not optimal, but are enough for our
goal of studying the continuity of the stationary density with respect to the parameters of the
system in the presence of positive amplitude noise.

Lemma 2.7.10 Let T1 and T2 : [−1, 1] → [−1, 1]bepiecewise continuous nonsingularmaps
that share the same continuity partition and let LT1 , LT2 the associated transfer operators,
let f ∈ L1. Then:

W (LT1( f dm), LT2( f dm)) ≤ ||T1 − T2||∞|| f ||1,
or equivalently

W ((PT1 f )dm, (PT2 f )dm) ≤ ||T1 − T2||∞|| f ||1.
Proof Let [a, b] be an interval and let P = {p0 = a, . . . , pn = b} be the endpoints of
a partition such that pi+1 − pi ≤ D (in the following we will call D the diameter of the
partition).
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Let f ∈ L1([a, b]) be a positive function; the projection of f dm associated to the partition
P is

πP f =
n−1∑
i=0

(∫ pi+1

pi
f dm

)
· δpi

where δpi is the Dirac δ at pi .
Then, for any Lipschitz function φ on [a, b] we have∣∣∣∣∣

n−1∑
i=0

∫ pi+1

pi
φ(pi ) f (x)dm −

∫ pi+1

pi
φ(x) f (x)dm

∣∣∣∣∣ ≤ Lip(φ)|| f ||L1([a,b]) · D,

which implies

W (πP f , f dm) ≤ D|| f ||L1([a,b]).

Fix ε > 0, by uniform continuity there exists a D such that the image of a partition of
diameter D has diameter at most ε; let f be a density, and let P be a partition of diameter
D, as above.

For a Dirac δp at p, we have that

LTi δp = δTi (p)

for i = 1, 2, which implies

W (LT1δp, LT2δp) ≤ ||T1 − T2||∞
By triangle inequality, this implies that

W (LT1πP f , LT2πP f ) ≤
∑
i

(∫ pi+1

pi
f dm

)
· W (LT1δpi , LT2δpi ) ≤ ||T1 − T2||∞|| f ||L1 .

Now, anyLipschitz functionφ is bounded; by the duality properties of the transfer operator
and the Koopman operator, we have∣∣∣∣∣
∫

φLT1( f dm) −
∑
i

φ(T1(pi ))
∫ pi+1

pi
f dm

∣∣∣∣∣ =
∣∣∣∣∣
∑
i

∫ pi+1

pi
(φ ◦ T1(x) − φ ◦ T1(pi )) f dm

∣∣∣∣∣ ,
which in turn implies

W (LT1( f dm), LT1πP f ) ≤ ε,

and similarly for T2.
This implies that

W (LT1( f dm), LT2( f dm)) ≤ W (LT1πP f , LT2πP f ) + 2ε,

as ε is arbitrary, we obtain the thesis. 	

Definition 2.7.11 Let T1 and T2 : [−1, 1] → [−1, 1] be piecewise continuous nonsingular
maps that share the same continuity partition. We will denote by

Lξ,Ti = π∗(ρξ ∗ LTi ), for i = 1, 2,

and the associated annealed Perron–Frobenius operators

Pξ,Ti f = π∗(ρξ ∗ PTi ( f )) for i = 1, 2.
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Lemma 2.7.12 Let T1 and T2 : [−1, 1] → [−1, 1] be piecewise continuous nonsingular
maps that share the same continuity partition. Then for any f ∈ L1:

||Pξ,T1( f ) − Pξ,T1( f )||1 ≤ ||T1 − T2||∞5||ρξ ||BV || f ||1
Proof

||Pξ,T1( f ) − Pξ,T2( f )||1 = ||π∗||BV→BV ||ρ̂ξ ∗ (PT1( f ) − PT2( f ))||1
≤ 5||ρξ ||BV · W (PT1( f )dm, PT2( f )dm),

where the operator norm of π∗ : BV ([−1 − ξ, 1 + ξ ]) → BV ([−1, 1]) is bounded by
Lemma 2.4.10. The statement then follows by Lemma 2.7.10. 	

Lemma 2.7.13 Let T1 and T2 be piecewise continuous nonsingular maps that share the same
continuity partition. Suppose Pξ,T1 contracts the space of average 0 functions in L1 with
constants C > 0 and 0 < θ < 1 then

||Pn
ξ,T1 f − Pn

ξ,T2 f ||L1 ≤ C

1 − θ
||T1 − T2||∞5||ρξ ||BV .

Proof This follows from a telescopization argument:

||Pn
ξ,T1 f − Pn

ξ,T2 f ||L1 ≤
n∑

i=0

||Pi
ξ,T1 ||L1→L1 ||Pξ,T1 − Pξ,T2 ||L1→L1 ||Pn−i−1

ξ,T2
f ||L1 .

Since ||Pξ,T2 f ||L1 ≤ || f ||L1 and by Lemma 2.7.12, we have that

||Pn
ξ,T1 f − Pn

ξ,T2 f ||L1 ≤
n∑

i=0

Cθ i ||T1 − T2||∞5||ρξ ||BV || f ||1

and the thesis follows. 	


3 Proof of Theorem 1.1.6

The results in Sect. 2 already allow us to prove Theorem 1.1.6.

Proof of Theorem 1.1.6 Hypothesis R2 and R4 together with Lemma 2.5.11 prove that for all
ξ ≥ ξ1 the operator Pξ contracts the space of average 0 functions in BV (and equivalently
in L1). This guarantees uniqueness of the stationary measure.

Hypothesis R3 guarantees that ln(|T ′|) ∈ L p(m) for p > 1; by Corollary 2.6.5 together
with Hypothesis R1 this allows us to prove that the function

λ(ξ) =
∫ 1

−1
ln(|T ′|)dμξ

is well defined and continuous in [0,+∞).
Corollary 2.6.6 together with Hypothesis D2 and R3 allow us to state that

λ(0) > 0, lim
ξ→+∞ λ(ξ) < 0,

therefore our system shows Noise Induced Order. 	


123



How Does Noise... Page 29 of 41    22 

4 Consequences for theModel

In this section, the noise kernel is

ρ(x) = 1

2
χ[−1,1]

the (normalized) characteristic function of the interval [−1, 1].
The family Tα,β : [−1, 1] → [−1, 1] is defined by

Tα,β(x) = 1 − 2β|x |α. (3)

4.1 Deterministic Behavior

The family Tα,β for α ≥ 2 and 0 < β ≤ 1 is a family of unimodal maps, a classical example
of non-uniformly hyperbolic dynamics.

In this family, the prototypical example is the quadratic family, i.e., T2,β as β varies; the
long term behavior of the system is strongly sensitive with respect to the parameter β: outside
a parameter set of Lebesgue measure 0 (the infinitely renormalizable parameters [15]), the
parameters can be classified into two categories:

• a dense subset of regular parameters where all the points converge to a periodic attract-
ing orbit

• a positive measure Cantor set of stochastic parameters that admit an absolutely contin-
uous invariant probability measure and have positive Lyapunov exponent.

It is worth discussing the properties of the Schwarzian derivative for the family Tα,β .

Lemma 4.1.1 For α > 1 the Schwarzian derivative of Tα,β is well defined and negative in
[−1, 0) ∪ (0, 1].
Proof This follows from computation:

S(Tα,β) =
(
T ′′

α,β

T ′
α,β

)′
− 1

2

(
T ′′

α,β

T ′
α,β

)2

.

For x > 0, we have that

T ′′
α,β

T ′
α,β

(x) = −2βα(α − 1)xα−2

−2βαxα−1 = α − 1

x
,

T ′′′
α,β

T ′
α,β

(x) = (α − 1)(α − 2)

x2
.

for x < 0, similarly we have that

T ′′
α,β

T ′
α,β

(x) = −2βα(α − 1)(−x)α−2

2βα(−x)α−1 = −α − 1

(−x)
= α − 1

x
.

and

T ′′′
α,β

T ′
α,β

(x) = 2βα(α − 1)(α − 2)(−x)α−3

2βα(−x)α−1 = (α − 1)(α − 2)

x2
.

Therefore, for x ∈ [−1, 0) ∪ (0, 1] we have that

S(Tα,β)(x) = (α − 1)(α − 2)

x2
− 3

2

(α − 1)2

x2
= −1

2

α2 − 1

x2
< 0.
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Remark 4.1.2 The unique point where the Schwarzian derivative of Tα,β is not defined is the
critical point. This observation is not new, and is used extensively in [17]; intuitively, due
to the slow recurrence of the critical orbit to the critical point, the levels of our tower are
avoiding the critical point.

Therefore, when we build the induction scheme, the Schwarzian derivative of the iterates
is going to be definite and negative.

We will prove now that our systems, when α ≥ 2 and β = 1 satisfy the hypothesis of [23,
Theorem I.5]. This permits us to state that β is a density point of stochastic parameters, i.e.,
parameters that admit an a.c.i.p. and have positive Lyapunov exponent.

To avoid notation clutter, in some of the following equations we are going to use the
notation fβ(x) := f (β, x), and the notation cn(β) := f nβ (0) for the critical orbit.

Definition 4.1.3 We say f (β, x) is a regular family if

(1) f (β, x) is C2 in x, β;
(2) c = 0 is the unique critical point of f (β, x), f (β, x) is increasing on [−1, 0), decreasing

on (0, 1], c2(β) < 0 < c1(β) and c2(β) ≤ c3(β), and for all x ∈ (−1, 0] we have that
f (β, x) > x ;

(3) there exists constants A∗
1, A

∗
2 and τ ≥ 2 such that for all β

A∗
1|x |τ−1 ≤ |Dx fβ(x)| ≤ A∗

2|x |τ−1

and

|Dx fβ(x)|
|Dx fβ(y)| ≤ exp

(
C∗

∣∣∣∣ xy − 1

∣∣∣∣
)

Lemma 4.1.4 Fixed α̃ ≥ 2 the family f (β, x) := Tα̃,β (x) is a regular family.

Proof Item (1), (2) and the first part of item (3) are trivial, the second part of item (3) follows
from the fact that

(α − 1) ln

( |x |
|y|

)
≤ (α − 1)

( |x |
|y| − 1

)
.

	

Definition 4.1.5 A parameter β is called a perturbable parameter if there exists a constant
ε∗ > 0 such that

(1) for every δ ∈ (0, ε∗) and n ≥ 1, if x ∈ I satisfies f iβ(x) /∈ (−δ, δ) and f nβ (x) ∈ (−δ, δ)

then |( f nβ )′(x)| ≥ ε∗,
(2) for all n ≥ 1, cn(β) ≥ ε∗ and fβ has no stable periodic point,
(3) limn→+∞ ∂β f nβ (c0(β))/∂x f

n−1
β (c1(β)) = Q∗ �= 0.

Lemma 4.1.6 Fixed α̃ ≥ 2, if we denote by fβ(x) := Tα̃,β(x), the parameter β = 1 is a
perturbable parameter.

Proof Item (2) in the definition of perturbable parameter is trivial, since c2(1) = −1, which
is a fixed point.

Item (3) follows from the chain rule for the derivative with respect to the parameter, i.e.,

∂

∂β
( f (β, g(β, x)) = ∂ f

∂β
(β, g(β, x)) + ∂ f

∂x
(β, g(β, x))

∂g

∂β
(β, x).
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This allows us to check item (3); by a straightforward computation we have that

∂ f

∂β
(1,−1) = 2 ,

∂ f

∂x
(1,−1) = 2α

and that

(∂β f n1 )(0) = ∂β f1(cn−1(1)) + ∂x f1(cn−1(1))∂β( f n−1
1 (0)),

since c2(1) = −1, which is a fixed point, we have that

(∂β f n1 )(0) = 2 + 2α∂β( f n−1
1 (0)),

which in turn tells us that

(∂β f n1 )(0) ∼ (2α)n−1

which in turn implies item (3).
The last conditionwe need to check is condition (1); wewill follow a classical construction

from [14].
We will denote by η the positive fixed point of f1(x); denote by fL the left branch of

f1(x) and by fR the right branch. We will identify by a string of “R” and “L” the preimages
of η through fR and fL , i.e.,

RLLL = f −1
R ( f −1

L ( f −1
L ( f −1

L (η)));
we observe that L = −η. We will denote by Lk a sequence of k consecutive “L” and similarly
for “R”.

Outside of the domain I = (−η, η) the map f1(x) is uniformly expanding. The preim-
ages RLk for k = 1, 2, . . . are all bigger than η, so their left and right preimages fall in
(−η, η) when taking their left and right preimages LRL , RRL , LRLL , RRLL ,... we obtain
a countable partition of (−η, η).

Denote by �k = (RRLk+1, RRLk) and by �−k = (LRLk+1, LRLk); observe that by
construction �k and �−k are mapped diffeomorphically onto (−η, η) by f k+1

1 . Moreover,
on [−1, 0)∪(0, 1]we have that f1 has negative Schwarzian derivative; this allows us to show
that if x belongs to �k , it will come back to (−η, η) with derivative bigger than 1, by Koebe
distortion lemma.

Now, if x /∈ I , f k1 (x) /∈ I for k = 1, . . . n, f n1 (x) ∈ I , since f1 is uniformly expanding
outside I , the condition is satisfied.

If x ∈ I , then x belongs to some �i and if we denote by r(x) = |i | + 1 the return time to
I then x returns to I after r(x) iterations and |Df r(x)1 (x)| > 1.

If coming back it enters (−δ, δ), then the condition is satisfied; if it returns to I \ (−δ, δ),
then it will return to I only after r( f r(x)1 (x)) steps, with derivative

|Df
r( f r(x)1 (x))
1 (x)| = |Df

r( f r(x)1 (x))
1 ( f r1 (x))Df r(x)1 (x)| > 1.

The only remaining case is when x starts outside I and then hits I \ (−δ, δ) in k steps.
In this case the modulus of the derivative is bigger than 1 before k and then we will need at
least r( f k1 (x)) steps to get back to I , guaranteeing that the derivative is bigger than 1. 	


This allows us to use [23] to prove the following.

Theorem 4.1.7 (Theorem 1.5 [23]) Let α̃ ≥ 2 and let fβ(x) = Tα̃,β(x); let β = 1; there
exists positive constants C, γ, λ, ε such that 1 is a density point for the set of parameters �

such that
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(1) fβ has no stable periodic point,
(2) for all n ≥ 1, | f nβ (0)| > ε exp(−nγ ),
(3) for all n ≥ 0, |( f nβ )′( fβ(0))| > C exp(nγ ),

(4) for all n ≥ 1, if x ∈ [−1, 1] satisfies f kβ (x) �= 0 for all k = 1, . . . n − 1 and f nβ (x) = 0,
then |( f nβ )′(x)| ≥ C exp(nλ).

This implies that β = 1 is a density point for the set of parameters that admit an abso-
lutely continuous invariant measure and with positive Lyapunov exponent with respect to this
measure.

Remark 4.1.8 As pointed out by one of the referees, the family Tα,β is not C3 for 2 < α < 3,
so many results as in [13, 22] do not apply in this interval of exponents. The results of [23]
works under lower regularity conditions.

Indeed, many of the technical details in the next sections are needed to apply our theory to
the maps Tα,β for α ∈ (2, 3). The treatment is simplified for systems with higher regularity.

4.2 Stochastic Stability

We remember that the noise is distributed uniformly, i.e., the mother noise kernel is

ρ(x) = 1

2
χ[−1,1].

We are interested in answering the following question: if μ0 is the invariant measure for
the deterministic system and μξ is the stationary measure for the random dynamical system
with noise amplitude ξ , is it true that μξ goes to μ0 as the noise amplitude goes to 0? And
in which sense does this happen, i.e., is it convergence in the weak-* topology, or we can
have stronger statements on the convergence? This problem is called stochastic stability, and
many results have appeared during the years [1, 2, 4, 5, 17, 22], where stochastic stability is
proved under different hypothesis and regularity assumptions.

In [5] strong stochastic stability is proved that for C4 unimodal maps with nondegenerate
critical points, negative Schwarzian derivative and such that, if c is the critical point, there
exists γ > 0, λc > 1, H0 ≥ 1, e2γ <

√
λc such that

• |T k(c)| ≥ e−γ k for all k > H0

• |(T k)′(T (c))| ≥ λkc for all k > H0

• f is topologically mixing on the interval bounded by c1 and c2.

This means that if fξ is the density of μξ and f0 is the invariant density of the a.c.i.p. of
T , we have that fξ converges to f0 in L1 norm.

The argument goes as follows, the condition above allows the authors in [5] to construct a
uniformly expanding2 tower extension of the dynamic T̂ : Î → Î , where Î ⊂ N×[−1, 1] is
the union of sets of the form {k} × Bk and the Bk’s are a partition of full measure of [−1, 1].
If �(k, x) = x is the projection taking a point in {k} × Bk , we have that � ◦ T̂ = T ◦ �.

This tower construction, as constructed in [5] works also for all deterministic perturbations
T (x) + ω where ω < ε0, so they are able to construct an extension of the random dynamical
system T̂ξ : Î → Î such that � ◦ T̂ξ = Tξ ◦ �, and using a perturbation argument prove the
following theorem.

2 with respect to an adapted Riemann metric by conjugating the Perron–Frobenius operator by multiplication
with a cocycle.
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Theorem 4.2.1 There exists an ξ0 > 0 such that for all ξ ∈ [0, ξ0) the random dynamical
system T̂ξ on Î admits a unique stationary measure with density f̂ξ in BV with respect to
the Lebesgue measure m̂ in Î . Moreover

lim
ξ→0+ || f̂ξ − f̂0||BV → 0,

which implies that fξ := �∗ f̂ξ converges to f0 := �∗ f̂0 in L1, μξ = fξdm is a stationary
measure for Tξ ,μ0 = f0dm is an invariant measure for T and, there exists C̃ > 0, 0 < θ̃ < 1
such that for all ξ ∈ [0, ξ0)

||Pn
ξ |U0 ||BV < C̃ θ̃n .

We will not give a full proof of the Theorem, since it is quite a technical argument and
the estimates can be done verbatim, but we will show where we can relax the hypothesis of
negative Schwarzian derivative on the whole domain and the hypothesis that the map is C4

on the whole domain.

Sketch of proof In the following, let f (x) = Tα,β(x), where β is a stochastic parameter
obtained from Theorem 4.1.7. Without loss of generality, to avoid cluttering with constants,
we assume the parameter satisfies

• |cn(β)| > e−γ n , for some small α, n ≥ 1 (slow recurrence to the critical point),
• |( f n)′(c1(β))| > λnc , for some λc > 1, for all n ≥ 1 (expansivity along the critical orbit),

Following [17] p. 287 we fix λ > 1 and ρ < eγ such that

eγ λρ ≤ λ
1/α
c ,

where α is the exponent of Tα,β , and letting γ < β1 < β2 < 2γ , the condition above implies
that

eβi /2λρ ≤ λ
1/α
c

for i = 1, 2.
Let ck = f k(0), and for all k > 0 let Bk = [ak, bk] be a set such that [ck − e−β2k, ck +

e−β2k] ⊇ Bk ⊇ [ck − e−β1k, ck + e−β1k]; due to the slow recurrence to the critical point, we
have that 0 /∈ Bk for all k > 0; let B0 = [−1, 1].

We fix a small δ > 0, to guarantee that once in the neighborhood (−δ, δ) we will go up
enough levels of the tower and, denoting by ft (x) = f (x) + t and, letting Ek = Bk × {k}
for k ≥ 0 and Î = ⋃

k≥0 Ek ; we define f̂t : Î → Î

f̂t (x, k) =
⎧⎨
⎩

( ft (x), k + 1) ifk ≥ 1and ft (x) ∈ Bk+1

( ft (x), 1) ifk = 0andx ∈ (−δ, δ)

( ft (x), 0) otherwise.

for all t ∈ (−ε0, ε0) (with ε0 small). The � map is defined as �(x, k) = x .
We define the unperturbed cocycle ω0 : Î → R

ω0(x, k) =
{

λk

|( f k )′( f −k+ (x,k))| if (x, k) ∈ Im( f̂ k)

0 otherwise

where f −k+ (x, k) = y is the unique point in (0, δ) such that f̂ k((y, 0)) = (x, k), we will not
define the perturbed cocycle ωε since the negative Schwarzian derivative hypothesis enters
into play only in the proof of the properties of ω0
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The negative Schwarzian derivative hypothesis is used only in [5] Lemma 4 and the
Sublemma in Sect. 4.

We start by showing how to adapt the proof of [5, Lemma 4]. Note that the support
of the cocycle ω0 in Ek is an interval for each k ≥ 1, with endpoints in the set ∂Ek ∪
{ f̂ k(0, 0), f̂ k(δ, 0), f̂ k(−δ, 0)}.

For k ≥ 1 let the subintervals of Ek defined as β+
k = {(y, k) | f (y) > bk+1 − ε} and

β−
k = {(y, k) | f (y) < ak+1 + ε}, and by γ +

k and γ −
k respectively their intersection with the

set {ωε(x, k) �= 0}.
For (y, k) ∈ γ +

k , and similarly for γ −
k we have that

ω0(y, k)

| f ′(y)| = λk

|( f k+1)′( f̂ −k+ (y, k))| ,

remark that neither f̂ −k+ (γ +
k ) nor �(E j ∩ supp(ω0)) contain 0 (refer to the proof [5, Lemma

4], Line 5), so the Schwarzian derivative of f | f̂ −k+ (γ +
k )

is defined and negative and similarly

for all its iterates. Therefore |( f k+1)′( f̂ −k+ (y, k))| has a unique maximum and Lemma 4
follows under our weaker hypothesis, by exchanging the order of the arguments in Line 4
and Line 5.

A similar argument works for the Sublemma in [5, Sect. 4], above equation 4.3, since
f nt has no critical points in γ , and the point where the Schwarzian derivative is not defined
correspond to the critical points, the Schwarzian derivative of f nt is defined and negative,
implying that the function g(n) has at most a local minimum on γ .

We need to assess the lack of full C4 regularity; the only place where the C4 regularity of
the map is used is in [5, “Climbing the tower” p. 497], to prove the regularity of the function
K (x) defined as

K (x) = | f ′(x−)|
| f ′(x)| ,

where x− is the unique point with x− �= x and f (x) = f (x−). We need to prove that there
exists finite constants K and K̃ such that

sup
x �=0

K (x) ≤ K , Varx �=0(K (x)) ≤ K̃ .

Remark that in our family, we have that K (x) ≡ 1 for all x �= 0; so these are trivially satisfied.
The proof then follows directly from the estimates in [5]. 	


Remark 4.2.2 While we fixed the uniform noise kernel, the class of noise kernels for which
the result in [5] holds is larger: in our framework of rescaled noise ρξ (x) = ρ(x/ξ)/ξ they
can be restated as the fact that ρ is bounded (which follows from Bounded Variation) and
the fact that, if we denote by J = {t | ρ(t) > 0}, 0 ∈ J and ln(ρ|J ) is concave.

This has an important consequence, i.e., continuity of the Lyapunov exponent near 0.

Corollary 4.2.3 In the hypothesis of Theorem 4.2.1, letting T (x) = Tα,β(x)

lim
ξ→0+

∫ 1

−1
ln(|T ′|) fξdm =

∫ 1

−1
ln(|T ′|) f0dm.
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Proof By direct computation
∣∣∣∣
∫ 1

−1
ln(|T ′|)( fξ − f0)dm

∣∣∣∣ =
∣∣∣∣
∫ 1

−1
ln(|T ′|)�∗( fξ − f0)dm

∣∣∣∣
=

∣∣∣∣∣
∑
k∈N

∫
{k}×Bk

ln(|T ′(�(x̂)|)( f̂ξ − f̂0)dm̂(x)

∣∣∣∣∣ ≤ || ln(|T ′|)||L1([−1,1])|| f̂ξ − f̂0||BV ( Î ),

where m̂ is the Lebesgue measure on Î , which implies the thesis since f̂ξ converges to f̂0 in
BV ( Î ). 	


Corollary 4.2.4 (Corollary of [5]) Let Tα,β ; fix α ≥ 2 and let the mother kernel be ρ(x) =
χ[−1,1], i.e, the noise in our random dynamical system is the uniform noise. Then β = 1 is a
density point for the set of parameters � for which there exists a ξ0 > 0 such that:

(1) for all ξ ∈ [0, ξ0) there exists a unique stationary measure μξ ,
(2) the density of the stationary measure μξ converges to the density of the deterministic

system in L1 as ξ goes to 0 (strong stochastic stability),
(3)

∫ 1
−1 ln(|T ′

α,β |)dμξ is a continuous function of the noise amplitude in [0, ξ0),
(4) there exists C̃ > 0, 0 < θ̃ < 1 such that for all ξ ∈ [0, ξ0)

||Pn
ξ ||BV ≤ C̃ θ̃n .

In particular, hypothesis D1, D2, R1, R2 and R4 of Theorem 1.1.6 are satisfied.

Remark 4.2.5 All the arguments presented in the sketch of the proof above are already known
in literature, see [17].

We prove now that hypothesis D3 is also satisfied.

Lemma 4.2.6 For α ∈ [2,+∞), β ∈ (0, 1]
ln(|T ′

α,β |) ∈ L p([−1, 1]),
for all p ≥ 1.

Proof Follows by computation; let x < 0, the x > 0 case is analogous.

T ′
α,β(x) = 2βα(−x)α−1,

therefore

ln(|T ′
α,β |) = ln(2) + ln(β) + ln(α) + (α − 1) ln(|x |),

which is in L p([−1, 1]) for all p ≥ 1 since ln(|x |) is in L p([−1, 1]) for all p ≥ 1. 	


We need now to identify under which conditions hypothesis R3 is satisfied.

4.3 Large Noise Limit

By corollary 2.5.3 as the amplitude of the noise ξ grows, we have that fξ converges to the
uniform density on [−1, 1].
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Fig. 2 The graph of �(α)

Fixed β = 1 we define the following function, the large noise limit of the Lyapunov
exponent of Tα,β :

�(α) =
∫ 1

−1
ln(|T ′

α|)dm
2

= ln(2) + ln(α) + 1 − α

This is a decreasing function of α, for α ≥ 2, moreover �(2) > 0 and the function � has a
zero α̃ contained in the interval [2.67834, 2.67835] 3. A plot of � is found in Fig. 2.

Corollary 4.3.1 For α > α̃, the map Tα,1 presents Noise Induced Order.

Proof By Corollary 4.2.4, hypothesis D1, D2, R1, R2, R4 are satisfied for Tα,1. By Lemma
4.2.6 hypothesis D3 is satisfied. If α > α̃ hypothesis R3 is also satisfied, and by Theorem
1.1.6 we have the thesis. 	


4.4 Behavior as the ParameterˇVaries

In this section we study the behavior of the Lyapunov exponent of Tα,β in presence of noise,
when we fix α and vary β.

We extend the large noise amplitude limit function to allow also β to vary; by a simple
computation

�(α, β) :=
∫ 1

−1
ln(|T ′

α,β |)dm = ln(2) + ln(α) + 1 − α + ln(β).

Since β belongs to (0, 1], this is an increasing function of β, so, if α > α̃ and β < 1 we have
that the Lyapunov exponent for big noise sizes is negative.

Lemma 4.4.1 Let Tα,β be the map defined in Eq. (3). Then, for h > 0 we have that

|Tα,β+h(x) − Tα,β(x)| ≤ 2h|x |α ≤ 2h.

3 obtained with Julia ValidatedNumerics package.
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Proof We will prove the inequality on [0, 1], the conclusion follows by symmetry:

|2(β + h)xα − 2βxα| ≤ 2h|x |α.

	


Remark 4.4.2 It is possible to compute an estimate also as α varies, proving the inequality
on [0, 1], the conclusion follows by symmetry:

|2(β + h)xα+k − 2βxα| ≤ |2(β + h)xα+k − 2βxα+k | + |2βxα+k − 2βxα|;
we focus now on

|2βxα+k − 2βxα| = k2β|x |α |x |k − 1

k
;

the inequality is written in this specific form

k|x |α |x |k − 1

k
= k|x |α ln |x | + O(k2),

therefore, for small k we have that, for some constant C

||Tα+k,β+h − Tα,β ||∞ ≤ |h| + C |k|,
since |x |α ln(|x |) goes to 0 for x → 0 and has bounded derivative in [0, 1] for any α > 1.

Definition 4.4.3 Fix α ≥ 2. In the following we will denote by Lξ,β the annealed transfer
operator of Tα,β with noise amplitude ξ , Pξ,β the associated annealed Perron–Frobenius
operator. If a unique stationary measure exists, we will denote it by μξ,β and its density by
fξ,β .

Corollary 4.4.4 Suppose there exist β, ξ such that Pξ,β contracts the space of average 0
function in L1; then there exists an ε > 0 such that for all 0 < h < ε the operator Pξ,β+h

contracts the space of average 0 functions in L1.

Proof This follows from Lemmas 2.7.13 and 4.4.1; if C, θ are the contraction constants of
Pξ,β then

||Pn
ξ,β+h |U0 ||L1→L1 ≤ ||Pn

ξ,β |U0 ||L1→L1 + ||Pn
ξ,β+h − Pn

ξ,β ||L1→L1

≤ Cθn + 3
C

1 − θ
h||ρξ ||BV .

If N is such that CθN < 1 and h is small enough, this implies that

||Pn
ξ,β+h |U0 ||L1→L1 < 1.

	


Corollary 4.4.5 Suppose there exist β, ξ such that Pξ,β contracts the space of average 0
function in L1 with constants C, θ ; then if h is small enough
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|| fξ,β+h − fξ,β ||L1 ≤ 6h||ρξ ||BV C

1 − θ

Proof From Corollary 4.4.4, we get that Pξ,β+h contracts the space of average 0 functions
in L1, therefore there exists a unique stationary density for Pξ,β+h .

Let N such that CθN < 1/2, then

|| fξ,β+h − fξ,β ||L1 ≤ ||Pn
ξ,β( fξ,β+h − fξ,β)||L1 + ||(Pn

ξ,β − Pn
ξ,β+k) fξ,β+h ||L1

≤ 1

2
|| fξ,β+h − fξ,β ||L1 + ||(Pn

ξ,β − Pn
ξ,β+k) fξ,β+h ||L1

as in the proof of Lemma 2.6.1, and therefore, since || fξ,β+h ||L1 = 1 we have

|| fξ,β+h − fξ,β ||L1 ≤ 6h||ρξ ||BV C

1 − θ
.

	


Lemma 4.4.6 Fix α ≥ 2 and let

λξ (β) :=
∫ 1

−1
ln(|T ′

α,β |) fξ,βdm.

If Pξ0,β0 contracts the space of average 0 functions in L1, then the function λξ0 is defined at
β0 and it is Hölder continuous with respect to β at β0.

Proof We observe now that, by Hölder inequality

|| fξ,β+h − fξ,β ||Lr ≤ (|| fξ,β+h − fξ,β ||L1)1/r (|| fξ,β+h − fξ,β ||L∞)1−1/r ,

and that

|| fξ,β+h − fξ,β ||L∞ ≤ 6||ρξ ||BV
Since ln |x | is in L p([−1, 1]) for p > 1, the result follows. 	


Remark 4.4.7 Under stronger hypothesis on the noise kernel it is possible to prove further
regularity results on

λ(ξ, α, β) =
∫ 1

−1
ln(|T ′

α,β |)dμξ,α,β,

where the function above is defined if there is a unique stationary measure for μξ,α,β for the
annealed transfer operator of Tα,β , using the linear response theory for random dynamical
systems developed in [10, 12].

Corollary 4.4.8 Fixed α ≥ α̃ there exists an ε(α) such that for all β ∈ (1− ε(α), 1] the map
Tα,β presents Noise Induced Order.

Proof Let β = 1. This is the full branch case, by the results in Sect. 4.2 we know that there
exists an interval [0, ξ0) and C > 0, 0 < θ < 1 such that for all ξ ∈ [0, ξ0), we have that
||Pn

ξ,1|U0 || ≤ Cθn .
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Therefore the stationary measure μξ,1 is unique for all ξ ∈ [0, ξ0) and by Sect. 4.2 there
is a ξ1 such that for all ξ ∈ [0, ξ1] we have that

∫ 1

−1
ln(|T ′

α,1)dμξ,1 > 0.

Let ξ̂ = min(ξ0, ξ1); fix a ξ ∈ [0, ξ̂ ), and let ε0 such that for all h < ε0 the operator
Pξ,1−h contracts the space of average 0 functions in L1; this ε0 exists by Corollary 4.4.4 and
depends on α. Then by Corollary 4.4.5, we have that for all h ∈ [0, ε0)

∣∣∣∣
∫ 1

−1
ln(|T ′

α,1|) fξ,1dm −
∫ 1

−1
ln(|T ′

α,1−h |) fξ,1−hdm

∣∣∣∣

≤
∣∣∣∣
∫ 1

−1
ln(|T ′

α,1|) fξ,1dm −
∫ 1

−1
ln(|T ′

α,1−h |) fξ,1dm

∣∣∣∣

+
∣∣∣∣
∫ 1

−1
ln(|T ′

α,1−h |) fξ,1dm −
∫ 1

−1
ln(|T ′

α,1−h |) fξ,1−hdm

∣∣∣∣
≤ ln(1 − h) + 2h|| ln(|T ′

α,1−h |)||L13||ρξ ||BV C

1 − θ
.

Therefore, for the ξ fixed above there exists an ε1 < ε0, depending on α, such that for all
h ∈ [0, ε1)

∫ 1

−1
ln(|T ′

α,1−h |) fξ,1−hdm > 0.

Recall now that the big noise amplitude limit of the Lyapunov exponent for Tα,1−h is
given by

∫ 1

−1
ln(|T ′

α,1−h |)
dm

2
= ln(2) + ln(α) + 1 − α + ln(1 − h);

therefore, if α > α̃, there exists an ε2 (depending on α) such that for all h ∈ [0, ε2) the big
noise amplitude limit is negative.

Let ε = min(ε1, ε2) then, for all β ∈ (1− ε, 1] the Lyapunov exponent at noise amplitude
ξ is positive and the big noise amplitude limit is negative, therefore, we have Noise Induced
Order. 	
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