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Abstract. We describe a framework in which it is possible to develop and implement algorithms for the ap-
proximation of invariant measures of dynamical systems with a given bound on the error of the
approximation. Our approach is based on a general statement on the approximation of fixed points
for operators between normed vector spaces, allowing an explicit estimation of the error. We show
the flexibility of our approach by applying it to piecewise expanding maps and to maps with indif-
ferent fixed points. We show how the required estimations can be implemented to compute invariant
densities up to a given error in the L1 or L∞ distance. We also show how to use this to compute an
estimation with certified error for the entropy of those systems. We show how several related com-
putational and numerical issues can be solved to obtain working implementations and experimental
results on some one dimensional maps.

Key words. approximation of invariant measure, transfer operator, fixed point approximation, Lyapunov ex-
ponent, interval arithmetics
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1. Introduction.

Overview. Several important features of the statistical behavior of a dynamical system
are “encoded” in invariant measures, and in particular in the so-called physical invariant
measures. These measures represent the statistical behavior of a large set of initial conditions.
Having quantitative information on these measures can give information on the statistical
behavior for the long time evolution of the system.

The problem of the existence and properties of such invariant measures has become a
central area of research in the modern theory of dynamical systems. For the most part the
results are abstract and give no quantitative precise information on the measure. This is a
significant limitation in applications and strongly motivates the search for algorithms which
are able to compute quantitative information on the physical measure.

The problem of approximating some interesting invariant measure of dynamical systems
has been quite widely studied in the literature. Some algorithms are proved to converge to
the real invariant measure (up to errors in some given metrics) in some classes of systems.
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RIGOROUS APPROXIMATION OF INVARIANT MEASURES 959

Sometimes asymptotical estimates on the rate of convergence are provided (see, e.g., [10, 11,
8, 9, 5, 27, 13]), but results giving an explicit (rigorous) bound on the error are relatively few
(see e.g., [25, 3, 22, 28, 19]).

Most of the known results thus do not provide a rigorous bound on the error which is
made in the approximation. In this way, the result of a single (finite) computation such as
those we can perform on everyday computers does not have a precise mathematical meaning.
If we implement an approach providing such explicit bounds, the results of suitable, careful
computations can be interpreted as rigorously (computer-aided) proved statements on the
behavior of the observed system.

In this paper we describe an approach which is able to provide algorithms to approximate
interesting invariant measures with a precise bound on the error and its practical implementa-
tion. The approach is quite general and is based on a quantitative statement on the stability
of fixed points of operators under suitable approximations. In our approach we focus on the
estimations which are important in computing fixed points (rather than the whole spectral
picture, as in [22]) in a way that we can keep our estimations as sharp as possible, trying also to
use as much as possible the information that can be recovered by a suitable (and computable)
finite dimensional approximation of the problem. The practical implementation of the method
and the necessary precise estimates are described here at various levels of generality, arriving
at a complete implementation for a class of piecewise expanding maps and a class of maps
with an indifferent fixed point. We perform the estimates for the computation of the invariant
measure up to small errors in the L1 norm in these cases, and also with small errors in the L∞

norm for a class of piecewise expanding maps with higher regularity. We also present some
real computer experiments, performing the rigorous computation on interval maps, and our
solution to the nontrivial computational/numeric issues that arise.

We end by remarking that general, abstract results on the computability of invariant
measures are given in [15] (see also [14]). In these papers some negative results are also
shown. Indeed, there are examples of computable1 systems without any computable invariant
measure. This shows some subtlety in the general problem of computing the invariant measure
up to a given error.

Plan of the paper. In section 3 we show a general result regarding the approximation
of fixed points for linear operators between normed spaces. In this result fixed points are
approximated by extracting and exploiting as much information as possible from the approxi-
mating operator. This general statement is suitable for application to the Ulam approximation
method and other discretizations. In section 4 we show how this can be done, and we show
an algorithm for the approximation of invariant measures up to small errors in the L1 norm
for the case of piecewise expanding maps (with bounded derivative).

In section 6 we show how, in suitably regular systems, we can use a similar construction
to compute the invariant measure, up to small errors in the L∞ norm.

In section 7 we show how to apply the approach to a class of maps with indifferent fixed
points.

In section 8 we show how to implement the algorithms in practice. In particular, we have

1“Computable” here means that the dynamics can be approximated at any accuracy by an algorithm; see,
e.g., [15] for a precise definition.D
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960 STEFANO GALATOLO AND ISAIA NISOLI

to show a way to rapidly compute the steady state of a large Markov chain up to a prescribed
error. We also discuss several other computational and programming issues, explaining how
we have implemented the algorithm to perform real rigorous computations on some examples
of piecewise expanding maps.

In section 9, as an application we show a rigorous estimation of the entropy (by the
Lyapunov exponent) of such maps. These estimations can be used as a benchmark for the
validation of statistical methods to compute entropy from time series.

In section 10 we show the result of some experiments. Here the invariant measure is
computed up to an error of less than 1% with respect to the L1 distance, while in section 11
we show an experiment in the L∞ framework.

2. Invariant measures and transfer operator. Let X be a metric space, T : X �→ X a
Borel measurable map, and μ a T -invariant Borel probability measure. An invariant measure
is a Borel probability measure μ on X such that for each measurable set A it holds that
μ(A) = μ(T−1(A)).

A set A is called T -invariant if T−1(A) = A (mod 0). The system (X,T, μ) is said to
be ergodic if each T -invariant set has total or null measure. In such systems the well-known
Birkhoff ergodic theorem says that for any f ∈ L1(X,μ) it holds that

(2.1) lim
n→∞

Sfn(x)

n
=

∫
f dμ

for μ almost each x, where Sfn = f + f ◦ T + · · ·+ f ◦ T n−1.

We say that a point x belongs to the basin of an invariant measure μ if (2.1) holds at x for
each bounded continuous f . In case X is a manifold (possibly with a boundary), a physical
measure is an invariant measure whose basin has positive Lebesgue measure (for more details
and a general survey see [29]).

The transfer operator. Let us consider the space SM(X) of Borel measures with sign on
X. A function T between metric spaces naturally induces a function L : SM(X) → SM(X)
which is linear and is called the transfer operator (associated to T ). Let us define L: if
μ ∈ SM(X), then L[μ] is such that

L[μ](A) = μ(T−1(A)).

Measures which are invariant for T are fixed points of L; hence the computation of invariant
measures can be done by computing the fixed points of this operator (restricted to a suitable
Banach subspace where the interesting invariant measure is supposed to be). The most applied
and studied strategy is to find a finite dimensional approximation for L reducing the problem to
the computation of the corresponding relevant eigenvectors of a finite matrix (some examples
are in sections 4 and 6.2 ). An approach to estimating the distance between a fixed point of
a discretization and a fixed point for the real operator can be based on quantitative spectral
stability results given in [18]. The method requires some estimation (see [22]) which cannot be
trivially done in a rigorous way in a reasonable time. The approach we explain below requires
simpler assumptions and estimations; moreover a portion of the required estimations will be
done by the computer.D
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RIGOROUS APPROXIMATION OF INVARIANT MEASURES 961

3. A general statement on the approximation of fixed points. Let us consider a re-
striction of the transfer operator to an invariant normed subspace (often a Banach space of
measures having some regularity) B ⊆SM(X), and let us denote its norm as || ||B. Let us still
denote the restricted transfer operator by L:B → B. Suppose it is possible to approximate L
in a suitable way by another operator Lδ for which we can calculate fixed points and other
properties. We suppose δ ∈ R is a parameter measuring the accuracy of the approximation
(e.g., the size of a grid).

Our extent is to exploit as much as possible the information contained in Lδ to approximate
fixed points of L. Let us hence suppose that f, fδ ∈ B are fixed points, respectively, of L and
Lδ.

Theorem 3.1. Suppose that
(a) ||Lδf − Lf ||B <∞,
(b) ∃N such that ||LNδ (fδ − f)||B ≤ 1

2 ||fδ − f ||B, and
(c) Liδ is continuous on B; ∃Ci s.t. for all g ∈ B, ||Liδg||B ≤ Ci||g||B.
Then

(3.1) ||fδ − f ||B ≤ 2||Lδf − Lf ||B
∑

i∈[0,N−1]

Ci.

Remark 3.2. We remark that the estimation for the error computed in (3.1) is an esti-
mation which contains quantities coming from the three items (a), (b), and (c). To use the
theorem we have to estimate the relevant quantities in each of these items. In the applications
of the theorem we present in the following, (a) will be estimated a priori by the same way the
approximating operator is defined and related to the quality of the approximation. The size of
||Lδf − Lf ||B will be small if the approximation is good in some sense.

The quantities N and Ci related to items (b) and (c) can be computed from the behavior of
the iterates of the approximating operator; this can be done by the computer while running the
algorithm. Hence these will be a posteriori estimations. In our applications, the required N
will be calculated from a description of Lδ, which will be a finite rank operator. As (Lδ −L)f
belongs to the space V of zero total mass measures (V = {μ s.t. μ(X) = 0}), N can be
estimated by computing the norm of iterates of Lδ restricted to V (see section 4.1 for more
details). Since the contraction speed of the zero average space is related to the speed of decay
of correlations, this can be seen as a “finite resolution decay of correlation estimation.” This
replaces some a priori estimations on the decay of correlation of the real system which are
needed in some other approaches. Note that (b) also means that there is no “projection” of f
on other fixed points of Lδ aside from fδ.

We also remark that the assumptions required on the operators L,Lδ are quite weak; in
particular, they are not required to satisfy some particular Lasota–Yorke (LY) inequality.

Proof of Theorem 3.1. The proof is a direct computation from the assumptions

||fδ − f ||B ≤ ||LNδ fδ − LNf ||B
≤ ||LNδ fδ − LNδ f ||B + ||LNδ f − LNf ||B
≤ ||LNδ (fδ − f)||B + ||LNδ f − LNf ||B
≤ 1

2
||fδ − f ||B + ||LNδ f − LNf ||BD
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962 STEFANO GALATOLO AND ISAIA NISOLI

(applying item (b)). Hence

||fδ − f ||B ≤ 2||LNδ f − LNf ||B,

but

LNδ − LN =
N∑
k=1

LN−k
δ (Lδ − L)Lk−1;

hence

(LNδ − LN )f =

N∑
k=1

LN−k
δ (Lδ − L)Lk−1f

=
N∑
k=1

LN−k
δ (Lδ − L)f

by item (c); hence

||(LN − LNδ )f ||B ≤
N∑
k=1

CN−k||(Lδ − L)f ||B

≤ ||(Lδ − L)f ||B
∑

i∈[0,N−1]

Ci

by item (a); and then

||fδ − f ||B ≤ 2||(Lδ − L)f ||B
∑

i∈[0,N−1]

Ci.

Remark 3.3. We remark that by the above proof, the factor 2 in (3.1) can be reduced as
near as wanted to 1 by putting at item (b) a factor smaller than 1

2 . Moreover, the coefficients
Ci can be replaced by the operator norm of Liδ restricted to V .

4. Estimation with L1 norm and Ulam method. We now give an example of application
of the above general result to the approximation of invariant measures of dynamical systems
up to small errors in the L1 norm with the Ulam method, going into more detail for this case.
Let us briefly recall the basic notions about the Ulam method. Let us suppose now that X is
a manifold with boundary. In the Ulam discretization method the space X is discretized by
a partition Iδ (with k elements), and the system is approximated by a (finite state) Markov
chain with transition probabilities

(4.1) Pij = m(T−1(Ij) ∩ Ii)/m(Ii)

(where m is the normalized Lebesgue measure on X) and a corresponding finite dimensional
operator Lδ (Lδ depends on the whole chosen partition, but to simplify notation we will
indicate it with a parameter δ related to the size of the elements of the partition). We remark
that, in this way, to Lδ corresponds a matrix Pk = (Pij) .D
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RIGOROUS APPROXIMATION OF INVARIANT MEASURES 963

We remark that Lδ can be seen in the following way: let Fδ be the σ-algebra associated
to the partition Iδ; then

(4.2) Lδ(f) = E(L(E(f |Fδ))|Fδ)

(see also [22, notes 9–10] for some more explanations). Taking finer and finer partitions, in
certain systems the finite dimensional model converges to the real one and its natural invariant
measure to the physical measure of the original system; see, e.g., [5, 12, 13, 22].

In the remaining part of this section we explain how to apply Theorem 3.1 to have an
explicit estimation for the approximation error in a more concrete case: L1 estimations with
Ulam discretization. Hence we suppose that

• Lδ is the Ulam approximation of L as defined above,
• B = L1(X),2 and
• there is an estimation for the regularity of f compatible with the approximation pro-

cedure (to have the estimation needed at item (a) of Theorem 3.1).

As an example to explain this latter point, the norm ||f ||B′ can be estimated (in some
space B′ of regular measures), and there is an estimation for the norm ||Lδ −L||B′→L1 (where
||.||B′→L1 is the operator norm, as an operator B′ → L1).

In this way, the estimate required at item (a) of Theorem 3.1 can be given as

(4.3) ||Lδf − Lf ||L1 ≤ ||Lδ − L||B′→L1 ||f ||B′ ,

and we could bound the final error as

||fδ − f ||L1 ≤ 2

N−1∑
0

Ci||Lδ − L||B′→L1 ||f ||B′ .

The estimation of ||f ||B′ is possible, for example, when L satisfies an LY inequality (see, e.g.,
[1, 21, 16] and Theorem 5.2) of the type

(4.4) ||Lng||B′ ≤ λn||g||B′ +B||g||L1 ,

implying ||f ||B′ ≤ B.

Hence, considering these remarks, in certain classes of examples the estimations needed
to apply Theorem 3.1 can be implemented in a sequence of steps we outline below, and which
will be described in more detail in the following sections.

I1. A suitable estimation for the regularity of f can be provided by the coefficients of the
LY inequality (see also section 5.0.1) or by other techniques, such as invariant cones
(see section 7).

I2. An approximation inequality can be provided to satisfy item (a) of Theorem 3.1; for
example, ||Lδ − L||B′→L1 is estimated a priori by the method of approximation (see
section 5.0.2).

2To be more precise, we suppose B to be the space of absolutely continuous measures on X. We will
informally identify a measure of this kind with its density.D
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964 STEFANO GALATOLO AND ISAIA NISOLI

I3. The integer N relative to item (b) in Theorem 3.1 can be estimated by the matrix Pk
relative to Lδ (see section 4.1).

I4. Since B = L1(X) and we consider the Ulam approximation, Ci = 1 (see section 5.0.3).
Now let us discuss more precisely item I3, which is central in this approach and whose

discussion is general. We discuss the other items in section 5, with precise estimations related
to a particular family of cases: the piecewise expanding maps.

4.1. About item I3. To computeN we consider V = {μ ∈ B|μ(X) = 0} and ||Lnδ |V ||L1→L1 .
Since f − fδ ∈ V , if we prove

||Lnδ |V ||L1→L1 <
1

2
,

we imply item (b) of Theorem 3.1. In the Ulam approximation, Lδ is a finite rank operator;
hence, once we fix a basis, this is given by a matrix.

For the sake of simplicity we will suppose that all sets Ij have the same measure: m(Ij) =
1/k. This will simplify some notation.

The natural basis {f1, . . . , fk} to consider is the set of characteristic functions of the sets
in the partition Iδ. If Iδ = {I1, . . . , Ik}, then fi = 1

δ 1Ii ; after the choice of this basis, the set
of linear combinations of such characteristic functions can be identified with R

k. By a slight
abuse of notation we will also indicate by V the set of zero average vectors in R

k.
To determine N we have to consider the matrix Pk|V associated to the action of Lδ on the

space of zero mean vectors with respect to this basis and compute its operator norm ||Pk|V ||1
where3

||Pk|V ||1 = sup
|v|1=1

|P (v)|1.

By (4.2) the behavior of Lδ and its relation with Pk is described by

f
E|Fδ◦I−1

→ v
Pk→ v′ I→ f ′ = Lδ(f),

where I: Rk → L1 is the trivial identification of a vector in R
k with a piecewise constant

function given by the choice of the basis. This implies that

||Lδ||L1→L1 ≤ ||Pk||1.
Indeed, if f ∈ L1 , ||E(f |Fδ)||L1 ≤ ||f ||L1 and I is trivially an isometry.

Note that if
∫
fdm = 0, then

∫
E(f |Fδ)dm = 0 and conversely, and hence

||Lδ |V ||L1 ≤ ||Pk|I−1(V )||1.
Since each vector is represented by a suitable step function, then ||Lδ|V ||L1 = ||Pk|I−1(V )||1.

The matrix corresponding to LNδ is PNk . Then

||LNδ |V ||L1 = ||PNk |I−1(V )||1.

Summarizing, we can have an estimation of ||LNδ |V ||L1→L1by computing a matrix P̃k,V
approximating Pk|I−1(V ) and ||P̃Nk,V ||1.

3|.|1 will denote the L1 norm on R
n.D
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The algorithm will hence compute ||P̃ jk,V ||1 for each integer j > 0, computing P̃ jk,V itera-

tively from P̃ j−1
k,V , until it finds some j for which it can deduce ||PNk |I−1(V )||1 < 1

2 . This j will
be output as the N required in item (b) of Theorem 3.1.

4.2. The algorithm. We now informally present the general algorithm which arises from
the previous considerations for the approximation of invariant measures by our fixed point
stability result. More details on the implementation, in particular cases, are given for each
step in the following subsections.

Algorithm 4.1. The algorithm works as follows:

1. Input the map and the partition.
2. Compute the matrix P̃k approximating Lδ and the corresponding approximated fixed

point f̃δ up to some required approximation ε1.
3. Compute ΔL, an estimation for ||Lδf − Lf ||L1 up to some error ε2.
4. Compute N such that item (b) of Theorem 3.1 is verified as described in item I3 above.
5. If all computations end successfully, output f̃δ.

All that was mentioned previously allows us to state the following proposition.

Proposition 4.2. I−1(f̃δ) is an approximation of one invariant measure in B, up to an error
ε given by

ε ≤ ε1 + 2N(ΔL+ ε2)

in the L1 norm.

Of course, it is possible that some computation will not stop or that the approximation
error estimated above is not satisfactory. In this case the algorithm will be started again with
a finer partition. With some a priori estimate on N , it is possible to prove that in certain
cases the computations will stop and the error will go to zero as δ → 0 (and even estimate
the rate of convergence); see section 5.1.

5. The piecewise expanding case. We now go into more detail, showing how the pre-
viously explained algorithm works in a concrete but nontrivial family of cases, where all the
required computations and estimations can be done.

Let

||μ|| = sup |μ(φ′)|
φ∈C1,|φ|∞=1

.

This is related to bounded variation4: If ||μ|| < ∞, then μ is absolutely continuous with
respect to Lebesgue measure with BV density (see [23]).

In this case X = [0, 1], B′ = {μ, ||μ|| <∞}. The dynamics we will consider are defined by
a map satisfying the following requirements.

Definition 5.1. We will call a nonsingular function T : ([0, 1],m) → ([0, 1],m) piecewise
expanding if

4Recall that the variation of a function g is defined as

var(g) = sup
(xi)∈Finite subdivisions of [0, 1]

∑

i≤n

|g(xi)− g(xi+1)|.
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• there is a finite set of points d1 = 0, d2, . . . , dn = 1 such that, for each i, T |(di,di+1) is

C2 and
∫
[0,1]

|T ′′|
(T ′)2 dx <∞; and

• infx∈[0,1] |T ′(x)| > 2 on the set where it is defined.
We remark that usually the definition of piecewise expanding map is weaker; in particular,

it is supposed that infx∈[0,1] |DxT | > 1 for some iterate. In concrete examples it can be
supposed that the derivative is bigger than 2 by considering some iterate of T (the physical
measure of the iterate is the same).

We suppose that the map is computable in the sense that we can compute the probabilities
Pij defined in (4.1) up to any given accuracy. This is the case, for example, if the map has
branches which are given by analytic functions with computable coefficients.

Piecewise expanding maps have a finite set of ergodic absolutely continuous invariant
measures with bounded variation density. If the map is topologically mixing, such an invariant
measure is unique.

Such densities are also fixed points of the (Perron–Frobenius) operator5 L : L1[0, 1] →
L1[0, 1] defined by

[Lf ](x) =
∑

y∈T−1(x)

f(y)

|T ′(y)| .

We now explain how to face all the points raised in the concrete implementation of Algo-
rithm 4.1.

5.0.1. About Item I1. In this section we obtain an explicit estimation of the coefficients
of the LY inequality for piecewise expanding maps. We follow the approach of [23], trying to
optimize the size of the constants.

Theorem 5.2. If T is piecewise expanding as above and μ is a measure on [0, 1], then

||Lμ|| ≤ 2

inf T ′
||μ||+ 2

min(di − di+1)
μ(1) + 2μ

(∣∣∣∣ T ′′

(T ′)2

∣∣∣∣
)
.

Proof. Note that

Lμ(φ′) =
∑

Z∈{(di,di+1)|i∈(1,...,n−1)}
Lμ(φ′χZ)

since Lμ gives zero weight to the points di (Lμ is absolutely continuous).
For each such Z define φZ to be linear and such that φZ = φ on ∂Z; then define ψZ = φ−φZ

on Z, and extend it to [0, 1] by setting it to zero outside Z. This is a continuous function.
Moreover, for each x ∈ Z

|φ′Z |∞ ≤ 2|φ|∞
min(di − di+1)

.

Thus

|Lμ(φ′)| =
∣∣∣∣
∑
Z

μ(ψ′
Z ◦ T χT−1(Z)) + μ(φ′Z ◦ T χT−1(Z))

∣∣∣∣.
5Note that this operator corresponds to the above defined transfer operator, but it acts on densities instead

of measures.D
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RIGOROUS APPROXIMATION OF INVARIANT MEASURES 967

Now note that, on Z, ψ′
Z ◦ T = (ψZ◦T

T ′ )′ + (ψZ◦T )T ′′
(T ′)2 ; then

|Lμ(φ′)| ≤
∣∣∣∣
∑
Z

μ

((
ψZ ◦ T
T ′

)′
χT−1(Z)

)∣∣∣∣+
∣∣∣∣
∑
Z

μ

(
(ψZ ◦ T )T ′′

(T ′)2
χT−1(Z)

)∣∣∣∣
+

2|φ|∞
min(di − di+1)

μ(1)

≤
∣∣∣∣μ
((

ψZ ◦ T
T ′

)′)∣∣∣∣+ 2|φ|∞μ
(∣∣∣∣ T ′′

(T ′)2

∣∣∣∣
)
+

2|φ|∞
min(di − di+1)

μ(1).

∑
Z
ψZ◦T
T ′ is not C1, but it can be approximated as best as wanted by a C1 function ψε such

that |ψε −
∑

Z(
ψZ◦T
T ′ )|∞ and μ(|ψε −

∑
Z(

ψZ◦T
T ′ )|) are as small as wanted. Hence

∣∣∣∣μ
((

ψZ ◦ T
T ′

)′)∣∣∣∣ ≤ ||μ||
∣∣∣∣ψZ ◦ T

T ′

∣∣∣∣
∞

≤ ||μ|| 2

inf T ′
|φ|∞

and

|Lμ(φ′)| ≤ ||μ|| 2

inf T ′
|φ|∞ + 2|φ|∞μ

(∣∣∣∣ T ′′

(T ′)2

∣∣∣∣
)
+

2|φ|∞
min(di − di+1)

μ(1),

||Lμ|| ≤ 2

inf T ′
||μ||+ 2

min(di − di+1)
μ(1) + 2μ

(∣∣∣∣ T
′′

(T ′)2

∣∣∣∣
)
.

Remark 5.3. We remark that from the above statement it is easy to extract

||Lμ|| ≤ 2

inf T ′
||μ||+

(
2

min(di − di+1)
+ 2

∣∣∣∣ T ′′

(T ′)2

∣∣∣∣
∞

)
|μ|1,

where
|μ|1 = sup

|φ|∞=1
|μ(φ)|

coincides with the L1 norm for a density of μ.
Remark 5.4. From now on, the following notation is going to be used throughout the paper:

(5.1) λ :=
1

inf T ′
, B′ :=

2

min(di − di+1)
+ 2

∣∣∣∣ T ′′

(T ′)2

∣∣∣∣
∞
.

These constants play a central role in our treatment, and B′ is the biggest obstruction in
getting good estimates for the rigorous error. We also remark that if T is continuous, the
estimate for B′ given above can be improved.

We remark that once an inequality of the form

||Lg||B′ ≤ 2λ||g||B′ +B′||g||B
is established (with 2λ < 1), then, iterating, we have

||Lng||B′ ≤ 2nλn||Lg||B′ +
1

1− 2λ
B′||g||B ,D
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968 STEFANO GALATOLO AND ISAIA NISOLI

obtaining the inequality in the form required at (4.4) and the coefficient

B =
1

1− 2λ
B′,

which bounds ||f || from above, in our algorithm.

5.0.2. About item I2. As outlined before, on the interval [0, 1] we consider a partition
made of intervals having length δ. As remarked in item I2, we need an estimate of the quality
of approximation by Ulam discretization.

Lemma 5.5. For piecewise expanding maps, if Lδ is given by the Ulam discretization as
explained before and f ∈ BV [0, 1] is a fixed point of L, we have that

||Lf − Lδf ||L1 ≤ 2δ||f ||.

Proof. Recalling that Lf = f , it holds that

||(L− Lδ)f ||L1 ≤ ||E(L(E(f |Fδ)|Fδ))−E(Lf |Fδ)||L1 + ||E(f |Fδ)− f ||L1 ,

but

E(L(E(f |Fδ)|Fδ))−E(Lf |Fδ) = E[L(E(f |Fδ)− f)|Fδ].
Since both L and the conditional expectation are L1 contractions,

||(L− Lδ)f ||L1 ≤ 2||E(f |Fδ)− f ||L1 .

It is not difficult to see that for f ∈ B′, there holds

||E(f |Fδ)− f ||L1 ≤ δ · ||f ||.

Indeed, from the definition of the norm we can see that ||f || ≥ ∑
i | supIi(f) − infIi(f)|,

where Ii are the various intervals composing F .

By this, since supIi(f) ≥ E(f |Ii) ≥ infIi(f), it follows that
∫
Ii
|E(f |Fδ)−f | ≤ δ| supIi(f)−

infIi(f)|, and the above equation follows.
By this

||(L− Lδ)f ||L1 ≤ 2δ||f ||.
Remark 5.6. This gives the estimate which is needed at item 3 of Algorithm 4.1. We have

that, when f is an invariant measure, the inequality implies (see (4.3))

||Lf − Lδf ||L1 ≤ 2

k
B.

5.0.3. About item I4. It is easy to see that if Lδ is given by the Ulam method,

||Lδf ||L1 ≤ ||f ||L1 ;

indeed, ||Lf ||L1 ≤ ||f ||L1 and ||E(f |Fδ)||L1 ≤ ||f ||L1 , as seen in section 4.1, and Lδ comes
from the composition of such functions.D
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5.1. The algorithm works. We show that the described algorithm can provide an estimate
of the invariant measure with an error as small as wanted if the size of the grid δ is chosen
small enough.

Theorem 5.7. It is possible to compute the invariant measure of a topologically mixing
piecewise expanding map at any precision with our algorithm.

Proof. Since L and Lδ satisfy the same LY inequality and ||L−Lδ||BV→L1 → 0 as δ → 0,
by [22, Proposition 3.1; Lemma 6.1] the spectral gap of L combined with the stability of the
spectral picture implies that there are A,λ ∈ R, λ < 1, independent of δ, such that for δ small
enough Lδ satisfies ||Lnδ |V ||BV→BV ≤ Aλn.

Since ||E(g|Fδ ||1 ≥ 2δ−1||E(g|Fδ ||, this implies

||Lnδ ||L1→L1 ≤ 2δ−1||Lnδ ||BV→BV ≤ 2δ−1Aλn.

Hence if n ≥ log(4A)−1δ
log λ , ||Lnδ ||L1→L1 ≤ 1

2 . And the algorithm stops. Moreover, by Proposition
4.2 and Remark 5.6 we have that up to multiplying constants, the error will be of the order
O(δ log δ−1) and can be made as small as wanted as δ → 0.

Remark 5.8. We remark that the above proof gives a rate of approximation of the order
O(δ log δ−1); this is indeed the optimal rate of approximation for the Ulam approximation for
piecewise expanding maps, as proved in [5].

6. Higher regularity and L∞ estimations. In this section we explain an implementation
of the general strategy to compute invariant measures with a rigorous error with respect to
the L∞ norm in the case of expanding maps having C2 regularity. A similar problem was
faced in [3] and outlined in [22] using the Keller–Liverani spectral stability result [18].

The general strategy in this case is, as before, applying Theorem 3.1 with the L∞ norm
as || ||B. This is possible by replacing the usual Ulam approximation with a more regular
discretization, projecting on a partition of unity made of piecewise linear hat functions (see
section 6.2) and proving for this approximation scheme an “approximation inequality” like in
item I2 of section 4 (see Theorem 6.6). The remaining necessary estimation on the regularity
of the fixed point (such as in item I1) is done again by a suitable LY inequality (see Lemma
6.4).

To estimate N and the numbers Ci we use a “a posteriori” estimate, done by the computer,
by estimating the norm of the discretized operator restricted to the space of zero average
discretized measures; by definition

Ci := max
||v||∞=1,v∈V

||Liδv||∞.

We denote S = {v | ||v||∞ = 1, v ∈ V }; this is a convex set with vertices the points ei − ej
as i and j vary between 1 and k; since the norm is a convex function, it attains its maximum
on one of the extremes of S. The extremes of S are 2 · Bin(k, 2), where by Bin we mean the
binomial coefficient; since we are looking for an estimate from above, we can observe that
||Liδ(ei − ej)||∞ ≤ ||Liδ(ei − e1)||∞ + ||Liδ(ej − e1)||∞. Therefore, ||Liδ|V ||∞ ≤ 2 ·maxi ||Liδ(ei −
e1)||∞.

In the next subsections we specify the estimates which are needed to implement this
strategy. We write explicitly only the arguments that differ substantially from the theory
developed above and sketch the arguments that can be deduced from the former sections.D
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6.1. Higher regularity: The general framework. In this section we consider expanding
maps of S1; note that expanding Markov maps of the interval can be treated in a similar way.

Definition 6.1. Let τ : S1 → S1 be a measurable transformation, τ ∈ C2(S1, S1); we say
that τ is an expanding map of the circle if |τ ′(x)| ≥ λ > 1 for every x ∈ S1.

Such maps have a Lipschitz invariant density (see, e.g., [23]). Let us see how to find it
with our approach.

In this section we will denote by ||.||∞ the supremum norm on the interval, and ||.||Lip :=
||.||∞ + Lip(.), where Lip(.) is the Lipschitz constant of an observable. We also denote by
CLip(I) the set of Lipschitz functions over the interval. Below, we will denote the operator
norm || ||L∞→L∞ with || ||∞.

Since τ satisfies an LY inequality of the form var(Lng) ≤ λnvar(g) + B||g||1, Lemma 3.1
and section 3.1 of [3] give us the following.

Remark 6.2. The L∞ operator norm of Ln can be bounded by

||Ln||∞ ≤M := B + 1.

Remark 6.3. For Markov maps of the interval, such an LY inequality is proved in [23], with
coefficients

λ ≤ 1/ inf |τ ′|, B ≤ 1

1− λ
·
∣∣∣∣
∣∣∣∣ T

′′

T ′2

∣∣∣∣
∣∣∣∣
∞
.

Fix now k ≥ k0 such that α =Mλk < 1. Let T := τk, and let L be (by abuse of notation)
the transfer operator associated to T ; Lemma 3.3 of [3] proves the following.

Lemma 6.4. The transfer operator L : CLip(I) → CLip(I) satisfies the following LY in-
equality:

Lip(Lg) ≤ αLip(g) +B1||g||∞,
where B1 := Lip(L1) (the transfer operator applied to the characteristic function of the unit
interval). For every n ≥ 1 we have

||Lng||Lip ≤ αn||g||Lip +M

(
1 +

B1

1− α

)
||g||∞.

Suppose {Ii} is a partition of S1 such that T |Ii is invertible, and denote by T−1
i the inverse.

As a first remark, we give an estimate for B1:

|L1(x)− L1(y)| =
∣∣∣∣

l∑
i=1

1(T−1
i (x))

T ′(T−1
i (x))

−
l∑

i=1

1(T−1
i (y))

T ′(T−1
i (y))

∣∣∣∣

≤
l∑
i=1

∣∣∣∣1(T
−1
i (x))− 1(T−1

i (y))

T ′(T−1
i (x))

∣∣∣∣+
l∑
i=1

∣∣∣∣ 1(T
−1
i (y))

T ′(T−1
i (x))

− 1(T−1
i (y))

T ′(T−1
i (y))

∣∣∣∣
≤ l ·

∣∣∣∣
∣∣∣∣ T ′′

(T ′)2

∣∣∣∣
∣∣∣∣
∞
|x− y|.

Therefore, B1 ≤ l · ||T ′′/(T ′)2||∞.
If f ∈ CLip is the fixed point of L, from the variation LY inequality, we have

||f ||∞ ≤ ||f ||BV ≤ B + 1.D
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6.2. Higher regularity: The approximation strategy. We define now a discretization of
the operator L, projecting on finite dimensional subspace of densities with higher regularity
with respect to the standard Ulam one. This permits us to get an estimate in the ||.||∞ norm
for the approximation error.

Theorem 6.5. Let P be a partition a0, . . . , an of S1 in k homogeneous intervals; let {φi}
be the family of functions given by

φi(x) =

⎧⎨
⎩

k · (x− ai−1), x ∈ [ai−1, ai],
−k · (x− ai+1), x ∈ [ai, ai+1],
0, x ∈ [ai−1, ai+1]

c,

where by definition a−1 := an. The finite dimensional “projection”6

π(f)(x) =
∑
j

∫
S1 fφj∫
S1 φj

· φj(x)

has the following properties:
1. Lip(π(f)) ≤ Lip(f);
2. ||π(f)||∞ ≤ ||f ||∞;
3. ||π(f)− f ||∞ ≤ Lip(f)/k.
Proof. Item 1 is true since

Lip(π(f)) =
k

|xj − xi| ·max
i,j

∣∣∣∣
∫ xj+1

xj−1

(f(x)− f(x+ (xj − xi)))φj(x)dx

∣∣∣∣ ≤ Lip(f).

Item 2 is true since

|π(f)(x)| =
∣∣∣∣
∑
i

1∫
S1 φi

∫
S1

fφidyφi(x)

∣∣∣∣ ≤ ||f ||∞
∣∣∣∣
∑
i

φi(x)

∣∣∣∣ ≤ ||f ||∞.

Item 3 is true since

|π(f)(x) − f(x)| ≤
∑
i

1∫
S1 φi

∫
S1

Lip(f)|y − x|φi(y)dy · |φi(x)|

≤ Lip(f) · 1
k
.

From Lemma 6.4 and the properties of π we have the following theorem.
Theorem 6.6. If f is a fixed point of L, then

||(L− πLπ)f ||∞ ≤ 2

k
(1 +M)Lip(f).

Proof.

||(L− πLπ)f ||∞ ≤ ||f − πf ||∞ + ||π(L− Lπ)f ||∞,
6We warn the reader that this is not a formal projection in the sense that π is not necessarily equal to π2.D
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972 STEFANO GALATOLO AND ISAIA NISOLI

and, from the fact that ||L||∞ < M we have the thesis.
Now we have all the ingredients to apply Theorem 3.1 and our algorithm, but for a different

norm.
Computing Lφi rigorously can be an expensive task; we can avoid computing it directly.

Instead of computing Lk := πLπ, we can compute a suitable approximation L̃k. This operator
is obtained by projecting on {φj} the functions

L̃φi(x) =
1

T ′(ai)
φi

(
ai +

1

T ′(ai)
(y − T (ai))

)
,

i.e., studying the operator obtained by taking on each interval [ai−1, ai+1] the linearization T̃
of the map T . A simple computation shows that

||Lkφi − L̃kφi||∞

≤
∣∣∣∣
∣∣∣∣ φi(T

−1(x))

|T ′(T−1(x))| −
φi(T

−1(x))

|T ′(xi)|
∣∣∣∣
∣∣∣∣
∞

+

∣∣∣∣
∣∣∣∣φi(T

−1(x))

|T ′(xi)| − φi(T̃
−1(x))

|T ′(xi)|
∣∣∣∣
∣∣∣∣
∞

≤ 4

k2
·
∣∣∣∣
∣∣∣∣ T ′′

(T ′)2

∣∣∣∣
∣∣∣∣
∞
.

Remark 6.7. Note that

||Lf − L̃kf ||∞ ≤ ||Lf − Lkf ||∞ + ||Lkf − L̃kf ||∞.

Let ṽk be the eigenvector computed using the operator L̃k. We can now express the rigorous
error using Theorem 3.1 and the fact that the ||Lik||∞ < M for every i (by Remark 6.2):

||f − ṽk||∞ ≤ 2

k
·N ·

N−1∑
0

Ci · (||L− Lk||∞ + ||Lk − L̃k||∞)||f ||∞

≤ 2

k
·N ·

N−1∑
0

Ci

(
2(M + 1)M

(
1 +

B1

1− α

)
+

4

k

∣∣∣∣
∣∣∣∣ T ′′

(T ′)2

∣∣∣∣
∣∣∣∣
∞

)
· (B + 1).

7. Maps with indifferent fixed points. In the literature, the computation of the invariant
measures for such types of maps has been discussed from different points of view (see, e.g.,
[4, 15, 27]). In particular, two approaches have been proposed:

• reduction of the problem to a piecewise expanding induced system [4];
• direct application of a discretization method [27].

No explicit implementations are provided. So it is not clear what method could be really
suitable for the purpose. We implement a direct discretization, following the general strategy
described in our paper.

We also compute the entropy of an example of such systems. In [7] it is shown that statis-
tical estimators converge slowly for these systems, further motivating the rigorous calculation
of the entropy for such systems.

Let 0 < α < 1, and let us consider a map T : [0, 1] → [0, 1] of the following type:D
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RIGOROUS APPROXIMATION OF INVARIANT MEASURES 973

1. T (0) = 0, and there is a point d ∈ (0, 1) s.t. T : [0, d)
onto→ [0, 1), T : [d, 1)

onto→ [0, 1].
2. Each branch of T is increasing and convex and can be extended to a C1 function;
T ′ > 1 for all x ∈ (0, d) ∪ (d, 1) and T ′(0) = 1.

3. There is a constant C ∈ (0,∞) such that

(7.1) T (x) ≥ x+ Cx1+α.

This kind of maps are now well known to have an absolutely continuous invariant mea-
sure f which is decreasing and unbounded; moreover, they have slow (polynomial) decay of
correlation.

To apply our strategy we need an estimate for the regularity of f (see item I1 in section
4). A useful estimate can be found in [27, Proposition 1.1, Theorem 1, equation 3]; see also
[24].

Proposition 7.1. Let us consider the transfer operator L associated to T and the following
cone of decreasing functions:

CA =

{
g ∈ L1|g ≥ 0, g decreasing,

∫ 1

0
g dm = 1,

∫ x

0
g dm ≤ Ax1−α

}
.

Let A∗ = ((1−α)Cd2+α)−1; if A ≥ A∗, then L(CA) ⊆ CA. Moreover, the unique invariant
density f of T is in CA∗.

We remark [27, Lemma 2.1] that if f ∈ CA, then f(x) ≤ Ax−α.

7.1. Application of our strategy: Items (a), (b), and (c). Let us show the a priori
estimation which is needed to start our strategy: item (a).

Let g ∈ CA. Let π be the Ulam projection with δ size intervals π(g) = E(g|Fδ), and
let x0 = ñδ ∈ I, with ñ a small integer, and g = g<x0 + g>x0 , where g<x0 = g 1[0,x0) and
g>x0 = g 1[x0,1].

Now
• ||g>x0 − πg>x0 ||1 ≤ δ var(g>x0) ≤ δAx−α0 ,
• ||g<x0 − πg<x0 ||1 ≤ ||g<x0 ||1 ≤ Ax1−α0 ;

hence
||g − πg||1 ≤ δAx−α0 +Ax1−α0 .

We can take x0 = δ and obtain

||g − πg||1 ≤ 2Aδ1−α.

Now let f ∈ CA∗ be the invariant density. Note that since L and π are L1 contractions,
for what is said above, ||Lf − Lπf ||1 ≤ ||f − πf ||1 ≤ 2A∗δ1−α. Now,

||f − πLπf ||1 ≤ ||f − πLf + πLf − πLπf ||1
≤ ||f − πf ||1 + ||Lf − Lπf ||1
≤ 4A∗δ1−α.D
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974 STEFANO GALATOLO AND ISAIA NISOLI

This gives the estimation needed at item (a) of Theorem 3.1.

About items (b) and (c), since we are approximating in L1, the discussion is the same as
that shown in sections 4.1 and 5.0.3; thus Ci ≤ 1.

Remark 7.2. In this approach we considered a discretization which is made starting from
a uniform grid of size δ. Since the density and its regularity are not uniform at all (having an
asymptote in the origin), a smarter grid to consider could be nonuniform, with larger cells far
from the origin and smaller cells near the origin. This adaptive design of the grid, providing
more resolution where we expect less regularity, may reduce the total number of cells considered
and the computation time; see, for example, [27], where a better rate of approximation is proved
for the Ulam method with these adaptive grids.

8. Implementing the algorithm. In this section we explain the details of the implementa-
tion of our algorithm and some related numerical issues. The main points are the computation
of a rigorous approximation of the related Markov chain and a fast method to rigorously ap-
proximate its steady state. We include some implementation and numerical supplementary
remarks, which can be skipped on a first reading.

8.1. Computing the Ulam approximation. To compute the matrix of the Ulam approxi-
mation, we have developed an algorithm that computes, with a rigorous algorithm, the entries
of a matrix P̃k which approximates Pk. Now let us see how our algorithm computes a matrix
P̃ ′
k which is a preliminary to obtaining P̃k. Our algorithm computes each entry and the error

associated to each entry in a way that the maximum of all these errors is bounded by a certain
quantity ε. To compute the entries P ′

ij of the matrix, consider each interval Ii of the partition,
and consider two main cases: if T is monotone on Ii, we can follow Algorithm 1; if T has a
discontinuity in Ii, we use Algorithm 2. In the algorithms ν is an input constant which is used
to control the error on the coefficients.

Algorithm 1 Computing P̃ ′
ij if T is monotone on Ii.

Set P̃ ′
ij = 0

Partition Ii into m intervals Ii,k for k = 0, . . . ,m− 1
for k = 0 → m do

Compute T (Ii,k)
if T (Ii,k) ⊂ Ij, then add m(Ii,k) to the coefficient P̃ ′

ij

if T (Ii,k) ⊂ (Ij)
C , then discard Ii,k

if T (Ii,k) ∩ Ij �= ∅ and T (Ii,k) ∩ (Ij)
C �= ∅ and m(Ii,k) > ν, then divide Ii,k into m

intervals, and iterate the procedure

if T (Ii,k) ∩ Ij �= ∅ and T (Ii,k) ∩ (Ij)
C �= ∅ and m(Ii,k) < ν, then add m(Ii,k) to εij , the

error on the coefficient P̃ ′
ij, and discard Ii,k

The maximum of all the εij is very important for all of our estimates; we denote it by ε.

We denote the matrix containing the computed coefficients by P̃ ′
k to distinguish it from Pk,

the actual matrix of the Ulam discretization. Please note that P̃ ′
k is not a stochastic matrix,

and we will need a stochastic matrix in what follows. We perturb its entries to modify it andD
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RIGOROUS APPROXIMATION OF INVARIANT MEASURES 975

Algorithm 2 Computing P̃ ′
ij if T has a discontinuity in Ii

Set P̃ ′
ij = 0

Partition Ii in m intervals Ii,k for k = 1, . . . ,m
for k = 0 → m do

if Ii,k does not contain a discontinuity then apply Algorithm 1 to Ii,k

if Ii,k contains the discontinuity and m(Ii,k) > ν then divide Ii,k in m intervals and
iterate the procedure

if Ii,k contains the discontinuity and m(Ii,k) < ν then add m(Ii,k) to εij , the error on
the coefficient P̃ ′

ij

obtain a stochastic matrix by computing the sum of the elements for each row, subtracting
this number by 1, and spreading the result uniformly on each of the nonzero elements of the
row, obtaining a new “markovized” matrix P̃k.

Let ε be the maximum of the errors |P̃ ′
ij − Pij|, and let nnzi be the number of nonzero

elements of the row. We have that for each row i the sum of its entries differs from 1 by at
most nnzi · ε. So, if we spread the result uniformly on each of the nonzero elements of the
row, we have a new matrix P̃k such that

|P̃ij − Pij | < 2 · ε.

Let NNZ = maxi nnzi; then, the matrix P̃k is such that

||Pk − P̃k||1 < 2 ·NNZ · ε.

The matrix P̃k is the matrix we are going to work with, and the “markovization” process
ensures that the biggest eigenvalue of P̃k is 1. Please note that, thanks to Theorem 3.1, we
have a rigorous estimate of the L1-distance between the eigenvectors of P̃k and Pk, as we
explain below.

Remark 8.1. Due to the form of (4.1), we can bound the maximum number of nonzeros
per row: NNZ ≤ sup |T ′|+ 4.

8.2. Computing the L∞ approximation. As explained in section 6.2, we compute an
approximation Q̃k to the matrix Qk associated to the operator L̃k linearizing the dynamics in
correspondence to the nodes a0, . . . , an of the discretization. This permits us to express L̃kφi
in closed form and compute explicit formulas for the coefficients (finding the primitives). Using
the iRRAM library [26], we computed these coefficients so that all the digits represented in the
double type are rigorously checked. Therefore, the error in the computation of the matrix Q̃k
in the higher regularity case is due to the truncation involved in the markovization process:

||Q̃k −Qk||∞ < 2−50 = ε.

8.3. Computing rigorously the steady state vector and the error.
Remark 8.2. Our algorithm and our software work for maps which are topologically tran-

sitive. This implies transitivity in the Markov chain approximating them. Indeed, let I̊i andD
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976 STEFANO GALATOLO AND ISAIA NISOLI

I̊j be the interior of two intervals of the partition; since the map is topologically transitive and
the derivative is bounded away from zero, there exists an Nij such that TNij (I̊i) ∩ I̊j �= ∅, and
this intersection is a union of intervals with nonzero measure. Therefore, if we call Ñ the
maximum of all these Nij , the matrix P Ñk has strictly positive entries, and therefore the matrix
Pk represents an irreducible Markov chain. By the Perron–Frobenius theorem this implies that
the steady state of the Markov chain is unique.

We want to find the steady state of the irreducible Markov matrix P̃k. To do so we use
the power iteration method; given any initial condition b0, if we set

bl+1 = bl · P̃k,

we have that bl converges to the steady state; we want to bound the numerical error of this
operation from above.

In the following section we will denote by ||.||F either the 1-norm or the∞-norm, depending
on which framework are we working in (the F stands for finite dimensional).

We build an enclosure for the eigenvector using an idea from the proof of the Perron–
Frobenius theorem [1, Theorem 1.1]: a Markov matrix A (aperiodic, irreducible) contracts
the simplex Λ of vectors v having 1-norm 1.

This simplex is given by the convex combinations of the vectors e1, . . . , ek of the base;
therefore, if we denote by DiamF the diameter in the distance induced by the norm F , we
have

DiamF (A
lΛ) ≤ max

i,j
||Al(ei − ej)||F ≤ max

i,j
||Al(e1 − ej)||F + ||Al(e1 − ei)||F

≤ 2max
i

||Al(e1 − ei)||F .

Fixing an input threshold εnum, we iterate the vectors {e1 − ej} with j = 2, . . . , n and
look at their F -norm until we find an l such that DiamF (A

lΛ) < εnum. Therefore, for any
initial condition b0, iterating it l times, we get a vector contained in Al(Λ) whose numerical
error is enclosed by εnum.

Numerical Remark 1. We refer the reader to [17] for the following inequality about roundoff
error in matrix vector multiplication, which we used to rigorously compute N and Nε (as usual,
k is the size of the partition):

||float(Av)−Av||F ≤ γk · ||A||F ||v||F ,

where, if u is the machine precision,

γk =
ku

1− ku
.

Please note that ||A||1 = 1, ||v||1 ≤ 2 in the Ulam case and that, since our matrix is sparse,
we can substitute k by NNZ in the computation of the above constant.D
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RIGOROUS APPROXIMATION OF INVARIANT MEASURES 977

8.4. Estimation of the rigorous error for the invariant measure. The main issue that
remains to be solved is the computation of the number of iterations N needed for the Ulam
approximation Lδ to contract to 1/2 the space of average 0 vectors as explained in section 4.1.

In some way, we already assessed this question while we were computing the iterations of
the simplex; the vectors e1− ej with j = 1, . . . , k are a base for the space of average 0 vectors,
so, while rigorously computing the eigenvector, we can also compute the number of iterations
needed to contract the simplex. We have to be careful since we do not know the matrix Pk of
the Ulam approximation Lδ explicitly; we know only its approximation P̃k.

Indeed (see section 4.1),

||Ljδ |V ||1 ≤ ||(P jk − P̃ jk + P̃ jk )|V ||1 ≤ ||(P jk − P̃ jk )|V ||1 + ||P̃ jk |V ||1.

We can estimate the second summand as

||P jk − P̃ jk |V ||1 ≤
j∑
i=1

||P j−ik |V ||1 · ||Pk − P̃k|V ||1 · ||P̃ i−1
k |V ||1

≤ 2 · j ·NNZ · ε,

since ||Pk − P̃k|V ||1 < 2 ·NNZ · ε, ||P jk |V ||1 ≤ 1, and ||P̃ hk |V ||1 ≤ 1 for every j, h. Therefore,

||P jk |V ||1 ≤ 2 · j ·NNZ · ε+ ||P̃ jk |V ||1.

Following the same line of thought, we have, in the higher regularity case, that

||Qjk|V ||∞ ≤ 2 · j ·M2

(
ε+

4

k2
·
∣∣∣∣
∣∣∣∣ T ′′

(T ′)2

∣∣∣∣
∣∣∣∣
∞

)
+ ||Q̃jk|V ||∞.

These two inequalities are very important for us, since they tell us that if ε and j are small
enough, we can estimate the number N of iterates needed for Pk (resp., Qk) to contract the
space V by the number of iterates needed by the matrix P̃k.

Numerical Remark 2. If ε and k are big, after some iterations the approximation error
could hide the contraction of P̃k. Therefore, it is important to compute P̃k with a small ε.

In the following we denote by f the fixed point of L, by vk the fixed point of Pk (resp.,
Qk), by vε the fixed point of P̃k (resp., Q̃k), and by ṽ the numerical approximation of vε. We
recall now the sources of error in our computation to clarify the last step of our algorithm:

1. ||f − vk||F , the discretization error, coming from the (Ulam or higher regularity) dis-
cretization of the transfer operator, whose final form was estimated in Remarks 5.6
and 6.7;

2. ||vk − vε||F , the approximation error; since we cannot compute exactly the matrix Pk,
we have to approximate it by computing a matrix P̃k;

3. ||vε − ṽ||F , the numerical error in the computation of the eigenvector, which was
estimated in subsection 8.3,

Then

||f − ṽ||F ≤ ||f − vk||F + ||vk − vε||F + ||vε − ṽ||F .D
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The last thing we need to compute to get our rigorous estimate is a bound for the approx-
imation error, item 2. We computed the number of iterates Nε

7 needed for P̃k to contract to
1/2 the space of average 0 vectors; then by using Theorem 3.1 we have that

||vk − vε||1 ≤ 2Nε||Pk − P̃k||1||vk||1 ≤ 4Nε · NNZ · ε.
In the L∞ case, the same reasoning leads to

||vk − vε||∞ ≤ 2N ||Qk − Q̃k||∞||vε||∞ ≤ 2N · ε · ||vε||∞.

Remark 8.3. In this inequality we used N instead of Nε. This is not a misprint but is
due to the fact that we have no a priori estimate of ||vk||∞ since we are using the piecewise
linear approximation. To solve this issue we use Theorem 3.1 with Qk as Lδ and Q̃k as L,
respectively.

Finally, we have that, if f is the invariant measure and ṽ is the computed vector, using
the estimate in Remark 5.6, the rigorous error is

||f − ṽ||1 ≤ 2N
2B

k
+ 4Nε ·NNZ · ε+ εnum.

In the ∞ case, summing up all the inequalities, we get an explicit formula for the error

||f − ṽ||∞ ≤2

k
·N ·M

(
4

k

∣∣∣∣
∣∣∣∣ T ′′

(T ′)2

∣∣∣∣
∣∣∣∣
∞

+ 2(M + 1)M

(
1 +

B1

1− α

))
· (B + 1)

+ 2N ·M2

(
ε+

4

k2

∣∣∣∣
∣∣∣∣ T ′′

(T ′)2

∣∣∣∣
∣∣∣∣
∞

)
(||ṽ||∞ + εnum) + εnum,

where N is computed with respect to ||.||∞.

9. Rigorous computation of the Lyapunov exponent and entropy. The rigorous compu-
tation of the invariant density allows a rigorous estimation of the Lyapunov exponent of the
system. This estimation can be used as a benchmark for the validation of statistical methods
to compute entropy from time series. We remark that, for the experimental validation of
these methods, to understand how fast they converge to the real value of the entropy an exact
estimate for the value is needed. We give a method which can produce such an estimate on
interesting systems where an exact estimate of the entropy is not possible. This can also be
applied to systems not having a Markov structure, where the convergence of statistical, sym-
bolic methods may be slow (see, e.g., [7]). We remark that our approach gives statements on
the entropy, which can be considered as real mathematical theorems with a computer-aided
proof.

The Lyapunov exponent at a point x, denoted by λ(x), of a one dimensional map is defined
by

Lexp(x) = lim
n→+∞

1

n

n∑
i=0

log((T i)′(x));

7Please note that, if ε is small, Nε = N is expected. In the program we compute the two values indepen-
dently, even if in general Nε ≤ N .D
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RIGOROUS APPROXIMATION OF INVARIANT MEASURES 979

by the Birkhoff ergodic theorem, we have that, relative to an ergodic invariant measure μ, for
μ-a.e. x we have that

Lexp(x) =

∫ 1

0
log(|T ′|)dμ = Lexp.

Our algorithm permits us to compute the density of an invariant measure with a rigorous
error bound. Suppose ṽ is the computed approximation for the invariant density, considered
as a piecewise constant function; by Young’s inequality we have that

∣∣∣∣
∫ 1

0
log(|T ′(x)|)f(x)dx −

∫ 1

0
log(|T ′(x)|)ṽ(x)dx

∣∣∣∣ ≤ max
x∈[0,1]

(log |T ′(x)|)||f − ṽ||1.

Therefore, to compute the Lyapunov exponent, the only thing we have to do is compute
with a (relatively) small numerical error the integral

∫ 1

0
log(|T ′(x)|)ṽdx.

10. Numerical experiments (L1 case). In this section we show the output of some com-
plete experiments we performed, using the programs described above.

The code is now in a hybrid state: the routines that generate the matrix are written using
the BOOST library and the iRRAM and can run on almost any computer, while the enclosure
method for the certified computation of the eigenvector requires a number of matrix-vector
products proportional to the size of the partition; in our examples the size of the partition is
220 ≈ 106. This forced us to implement and run our programs in a parallel HPC environment,
using the library PETSc and running them on the CINECA Cluster SP6. See 91104 01.zip
[local/web 120KB] for the code for the programs.

In every component where the maps are continuous, the maps are polynomials. So, we can
use exact arithmetics (rationals) to compute the matrix P̃k. Please note that the discontinuity
points are irrational; this is taken care of as we explained in section 8.1.

To ease the reading of the tables of the data, here is a rapid summary of the different
quantities involved with reference to where they appear in the paper.

Inputs Outputs

λ LY inequality Remark 5.4 Nε iterates of P̃k|V
B′ LY inequality Remark 5.4 N iterates of Pk|V
B Bound for ||f ||BV section 4 l iterates for the enclosure
ε error on the matrix section 8.1 εrig computed rigorous error
εnum numerical error section 8.3 Lexp computed Lyapunov exponent

10.1. The Lanford map. For our first numerical experiment we chose one of the maps
investigated in [20]. The map T : [0, 1] → [0, 1] is given by

T : x �→ 2x+
1

2
x(1− x) (mod 1).D

ow
nl

oa
de

d 
02

/1
3/

17
 to

 1
30

.2
38

.1
0.

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

91104_01.zip
http://epubs.siam.org/doi/suppl/10.1137/130911044/suppl_file/91104_01.zip


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

980 STEFANO GALATOLO AND ISAIA NISOLI

What seems to be a good approximation of the invariant measure of the map is plotted in
Figure 1 of the cited article. Since this map does not comply with the hypothesis of our article,
i.e., there are some points where 1 < |DxT | ≤ 2, we study the map T 2 := T ◦ T . Clearly, the
invariant measures for T and T 2 coincide.

In Figure 1(a) you can see a plot of this map, and in Figure 1(b) you can see the plot of
density of the the invariant measure we obtain through our method.

0
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0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Lanf

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

ṽ

(a) The second iterate of the Lanford map (b) The invariant measure for the Lanford map

Figure 1. Lanford’s example.

The following are the data (input and outputs) of our algorithm.

Inputs Outputs

λ 4/3
√
17 Nε 17

B′ ≤ 7.019 N 18
B 19.88 l 25
ε ≤ 3 · 10−11 εrig 0.0016
εnum ≤ 0.0001 Lexp 1.315 ± 0.003

10.2. A map without the Markov property. The map T : [0, 1] → [0, 1] given by

(10.1) T (x) =
17

5
x mod 1,

whose graph is plotted in Figure 2(a). This map does not enjoy the Markov property: since
(17/5)k is never an integer, the orbit of 1 is dense.

The density of the invariant measure we obtain through our method is plotted in Figure
2(b).

Below are some of the data (input and outputs) of our algorithm; please note that in this
case we know the exact value of the Lyapunov exponent.D
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ṽ

(a) Map (10.1) (b) The invariant measure for map (10.1)

Figure 2. Example (10.1).

Inputs Outputs
λ 5/17 Nε 13
B′ < 17 N 14
B 41.47 l 20
ε ≤ 1.75 · 10−10 εrig 0.0026
εnum ≤ 0.0001 Lexp ln(17) − ln(5)

10.3. A nonlinear version. We study the map T : [0, 1] → [0, 1] given by

(10.2) T (x) =

⎧⎪⎪⎨
⎪⎪⎩

17
5 x, 0 ≤ x ≤ 5

17 ,
34
25 (x− 5

17 )
2 + 3(x− 5

17 ),
5
17 < x ≤ 10

17 ,
34
25 (x− 10

17 )
2 + 3(x− 10

17 ),
10
17 < x ≤ 15

17 ,
17
5 (x− 15

17 ),
15
17 < x ≤ 1,

whose graph is plotted in Figure 3(a). This map is similar to map (10.1), but it is nonlinear
in the two intervals [5/17, 10/17] and [10/17, 15/17], where it is defined by two branches of a
polynomial of degree 2.

The density of the invariant measure we obtain through our method is plotted in Figure
3(b). Please note that near 0.337 and 0.403 there are two small “staircase steps” which are
visible only zooming the graph.

Below are some of the data (input and outputs) of our algorithm.

Inputs Outputs
λ 1/3 Nε 14
B′ < 18.22 N 15
B 54.69 l 21
ε ≤ 2.19 · 10−11 εrig 0.004
εnum ≤ 0.0001 Lexp 1.219 ± 0.004D
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(a) Map (10.2) (b) The invariant measure for map (10.2)

Figure 3. Example (10.2).

10.4. A Manneville–Pomeau map. In this section we compute a density with small error
in the L1 norm, using the estimates developed in section 7.

The numerical part is essentially the same as that used to compute the invariant measure in
the L1 case; the only big difference resides in the fact that to compute the Ulam approximation
we used an algorithm based on an interval Newton root-finding algorithm instead of using the
exhaustion algorithm.

The example we have studied is

(10.3) T (x) = x+ x1+
1
8 mod 1,

whose graph is plotted in Figure 4(a), using a discretization in 1048576 elements.
The density of the invariant measure is plotted in Figure 4(b).

Inputs Outputs
α 0.125 Nε 49
A∗ ≤ 4.58 N 50
εnum ≤ 0.001 l 88
d [0.52039, 0.52040] εrig 0.006
ε ≤ 2.1 · 10−15 Lexp 0.685 ± 0.005

11. Numerical experiments (L∞ case). In this section we compute a density with small
error in the L∞ norm, using the estimates developed in sections 6.1 and 6.2 and using the
methods explained in the subsections 8.2, 8.3, and 8.4.

11.1. A Markov perturbation of 4 · x mod 1. The example we have studied is

(11.1) T (x) = 4x+ 0.01 · sin(8πx) mod 1,D
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(a) Map (10.3) (b) The invariant measure for map (10.3)

Figure 4. Example (10.3).

whose graph is plotted in Figure 5(a) using a discretization in 131072 elements.
The density of the invariant measure is plotted in Figure 5(b).

Inputs Outputs
λ 0.27 Nε 1
B ≤ 0.62 N 1
B1 < 1.8 C1 0.49
M 1.62 l 10
α ≤ 0.44 εrig 0.0014
εnum ≤ 0.0000001 Lexp 1.386 ± 0.002
(4||T ′′/(T ′)2||∞)/k2 ≤ 4 · 10−10

12. Conclusion and directions. We have seen a quite general strategy for obtaining rig-
orous computation of invariant measures by a fixed point stability statement. We showed
theoretical and practical details of the strategy implementation on some classes of one dimen-
sional maps.

We remark that since the estimate for the error is a posteriori and is applied to the dis-
cretized operator, the algorithm can also work in systems where the spectral gap is not present
(e.g., the indifferent fixed point systems). What is needed is an approximation estimation to
satisfy item (a) of Theorem 3.1 and the discretized system to contract the zero average vectors
fast enough to make the error small.

The next examples where it is natural to try the strategy are multidimensional piece-
wise hyperbolic systems. Typically here there will be no absolutely continuous invariant
measure but measures having fractal support. Some (quite complicated) functional analytic
framework (see, e.g., [16, 2]) was proved to give nice spectral properties, but an actual im-
plementation seems to be computationally too complex. Here probably the use of suitableD
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(a) Map (11.1) (b) The invariant measure for map (11.1)

Figure 5. Example (11.1).

simplified anisotropic norms will be useful, but the implementation must be able to avoid the
problems arising from the bigger dimension of the space.
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