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Abstract. We show an elementary method to obtain (finite time and asymp-
totic) computer assisted explicit upper bounds on convergence to equilibrium

(decay of correlations) and escape rates for systems satisfying a Lasota Yorke

inequality. The bounds are deduced from the ones of suitable approximations
of the system’s transfer operator. We also present some rigorous experiments

on some nontrivial example.
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1. Introduction. The evolution of a chaotic system is unpredictable and difficult
to describe, but its statistical properties are sometime predictable and (reasonably)
simple to describe. Many of these properties are related to its associated transfer
operator, essentially via its spectrum. This is a linear operator representing the
action of the dynamics on measures space. Let us consider the set SM(X) of finite
signed Borel measures on the metric space X. A Borel map T : X → X naturally
induces a linear operator LT : SM(X) → SM(X) called the transfer operator,
defined as follows. If µ ∈ SM(X) then LT [µ] ∈ SM(X) is the measure such that

LT [µ](A) = µ(T−1(A)).

Sometimes, when no confusion arises, we simply denote LT by L.
In this paper we address two important statistical features of the dynamics: the

rate of convergence to equilibrium and the escape rate in open dynamical systems.
Convergence to equilibrium (see Section 2) is a quantitative estimation of the

speed in which a starting, absolutely continuous measure approaches the physical
invariant measure. This is related to the spectrum of the transfer operator, since
the speed is exponential in the presence of a spectral gap, and to decay of correla-
tions. Indeed, an upper bound on the decay of correlations can be obtained from
convergence to equilibrium estimation in a large class of cases, see [1]). An esti-
mation for these rates is a key step in deducing many other consequences: central
limit theorem, hitting times, recurrence rate, etc. (see, e.g., [8, 6, 13, 21]).

The escape rate refers to open systems, where the phase space has a “hole” (see
Section 3) and one wants to understand, quantitatively, the speed of loss of mass of
the system through the hole. This is related to the spectral radius of a truncated
transfer operator and to the presence of metastable states (see, e.g., the book [2]
for an introduction).

We will present a method which allows us to obtain an efficient, effective and
quite elementary finite time and asymptotic upper estimations for these decay rates.
The strategy is applicable under two main assumptions on the transfer operator.

• the transfer operator is regularizing on a suitable space; it satisfies a Lasota
Yorke inequality (see Equation 2);

• the transfer operator can be approximated in a satisfactory way by a finite
dimensional one. (see Equation 3)

The first item in some sense describes the small scale behavior of the system. The
regularizing action implies that at a small scale we see a kind of uniform behavior.
The macroscopic behavior is then described by a “finite resolution” approximation of
the transfer operator. This will be represented by suitable matrices, as the transfer
operator is linear, and its main features will be computable from the coefficients of
the matrix.

In the following we will enter in the details of how this strategy can be imple-
mented in general, and in some particular system for which we will present some
experiment rigorously implemented by interval arithmetics.
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2. Recursive convergence to equilibrium estimation for maps satisfying
a Lasota Yorke inequality. Consider two vector subspaces of the space of signed
measures on X

S ⊆W ⊆SM(X),

endowed with two norms, the strong norm || ||s on S and the weak norm || ||w on
W, such that || ||s ≥ || ||w on W.

We say that the probability measure preserving transformation (X,T, µ) has
convergence to equilibrium with speed Φ with respect to these norms if for any
Borel probability measure ν on X

||Lnν − µ||w ≤ ||ν||sΦ(n). (1)

This speed can be also estimated by the rate of convergence to 0 of ||Lnξ||w
for signed measures ξ ∈ S such that ξ(X) = 0 or by estimating the decay rate of
correlation integrals like∣∣∣∣ ∫ f ◦ Tn g dµ−

∫
f dµ

∫
g dµ

∣∣∣∣
for observables f, g in suitable function spaces.

It is important both to have a certified quantitative estimation for this conver-
gence at a given time (numerical purposes, rigorous computation of the invariant
measure as in [14],[15],[17], see also Remark 4), or an estimation for its asymptotic
speed of convergence (computer assisted proofs of the speed of decay of correlations
and its statistical consequences).

In the literature, the problem of computing rigorous bounds on the decay of
correlation and convergence to equilibrium rate of a given system was approached
by spectral stability results (see, e.g., [20]). The use of these methods is limited by
the complexity of the assumptions and of the a priori estimations which are needed.

In the following we show how the Lasota Yorke inequality, which can be estab-
lished in many systems, coupled with a suitable approximation of the system by a
finite dimensional one allows us to directly deduce finite time and asymptotic upper
bounds on the convergence to equilibrium of the system in a simple and elementary
way.

Assumptions. Let us suppose that our system satisfies the following:

• The system satisfies a Lasota Yorke inequality.
There exists constants A,B, λ1 ∈ R with λ1 < 1 such that ∀ f ∈ S,∀n ≥ 1

||Lnf ||s ≤ Aλn1 ||f ||s +B||f ||w. (2)

• There exists a family of “simpler” transfer operators Lδ approximating L sat-
isfying a certain approximation inequality: there are constants C,D such that
∀ g ∈ S,∀n ≥ 0:

||(Lnδ − Ln)g||w ≤ δ(C||g||s + nD||g||w). (3)

• There exists δ > 0, λ2 < 1 and n1 such that, setting

V = {µ ∈ S|µ(X) = 0}

we have Lδ(V ) ⊆ V and

∀ v ∈ V, ||Ln1

δ (v)||w ≤ λ2||v||w. (4)
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Remark 1. In the following we will consider examples of systems satisfying such
inequality, where S is the space of measures having a bounded variation density,
|| ||s is the bounded variation norm and || ||w is the L1 one.

We also remark that condition (3) is natural for approximating operators Lδ
defined (as it is commonly used), by πδLπδ, where πδ is a projection on a finite
dimensional space with suitable properties, see Section 6.3, where it is shown how
to obtain (3) under these assumptions.

We remark that in Equation (4), the condition is supposed on Lnδ , which is sup-
posed to be simpler than Ln (e.g., a discretization with a grid of size δ represented
by a matrix, see Section 5) and its properties might be checked by some feasible
computation.

Under the above conditions we can effectively estimate from above the conver-
gence to equilibrium in the system in terms of the matrix

M =

(
Aλn1

1 B
δC δn1D + λ2

)
.

Since M is positive, its largest eigenvalue is

ρ =
Aλn1

1 + δn1D + λ2 +
√

(Aλn1
1 − δn1D − λ2)2 + 4δBC

2
. (5)

Let (a, b) be the left eigenvector of the matrix M associated to the eigenvalue ρ,
normalized in a way that a+ b = 1.

The condition ρ < 1 below implies that the powers of M go to zero exponentially
fast. Note that the quantities δBC, δn1D have a chance to be small when δ is small,
but this is not guaranteed since the choice of n1 depends on δ. If we consider the
case of piecewise expanding maps, with Lδ being the Ulam approximation of L, this
is the case (see [12], Theorem 12).

Theorem 2. Under the previous assumptions 2, 3, 4, if ρ < 1 then for any g ∈ V ,
(i) the iterates of Lin1(g) are bounded by(

||Lin1(g)||s
||Lin1(g)||w

)
�M i

(
||g||s
||g||w

)
Here � indicates the componentwise ≤ relation (both coordinates are less or equal).

(ii) In particular we have

||Lin1g||s ≤ (1/a)ρi||g||s,
||Lin1g||w ≤ (1/b)ρi||g||s.

(iii) Finally ∀ k ∈ N

‖Lkg‖s ≤ (A/a+B/b)ρ

⌊
k
n1

⌋
||g||s, (6)

‖Lkg‖w ≤ (B/b)ρ

⌊
k
n1

⌋
||g||s. (7)

Proof. (i) Let us consider g0 ∈ V and denote gi+1 = Ln1gi. By assumption 2 we
have

||Ln1gi||s ≤ Aλn1
1 ||gi||s +B||gi||w.

Putting together the above assumptions 3 and 4 we get

||Ln1gi||w ≤ ||Ln1

δ gi||w + δ(C||gi||s + n1D||gi||w)

≤ λ2||gi||w + δ(C||gi||s + n1D||gi||w).
(8)
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Compacting these two inequalities into a vector notation, setting vi =

(
||gi||s
||gi||w

)
we get

vi+1 �
(
Aλn1

1 B
δC δn1D + λ2

)
vi. (9)

The relation � can be used because the matrix is positive. This proves (i) by an
immediate induction.

(ii) Let us introduce the (a, b) balanced-norm as ||g||(a,b) = a||g||s + b||g||w. The
first assertion gives

||Lin1g||(a,b) ≤ (a, b) ·M i ·
(
||g||s
||g||w

)
,

hence

||Lin1g||(a,b) ≤ ρi||g||(a,b).
From this, the statement follows directly.

(iii) Writing any integer k = in1 + j with 0 ≤ j < n1, by assumption 2 we have

‖Lk(g0)‖s ≤ Aλj1‖Lin1g0‖s +B‖Lin1g0‖w,

and the conclusion follows by the second assertion (ii).

Remark 3. We remark that our approach being based on a vector inequality has
some similarity with the technique proposed in [15]. The first inequality used is
the same in both approaches; the second is different. Our inequality relies on the
approximation procedure and is more general.

Remark 4. We also remark that our method allows us to bound the strong norm
of the iterates of a zero average starting measure. Considering Ln(m − µ) where
m is a suitable starting measure (Lebesgue measure in many cases) and µ is the
invariant one, we can understand how many iterations of m are necessary to arrive
at a given small (strong) distance from the invariant one. This, added to a way to
simulate iterations of L with small errors in the strong norm, allows in principle
the rigorous computation of the invariant measure up to small errors in the strong
norm.

3. Escape rates. A system with a hole is a system where there is a subset H such
that when a point falls in it, its dynamics stops there. We consider H to be not part
of the set where the dynamics acts. Iterating a measure by the dynamics will lead
to losing some of the measure in the hole at each iteration, letting the remaining
measure decay at a certain rate.

In many of such systems a Lasota Yorke and an approximation inequality (Equa-
tions 2, 3) can be proved, hence the procedure of the previous section allows us to
estimate this rate, which is related to the spectral radius of the transfer operator.

Let us hence consider a starting system without hole with transfer operator L,
consider a hole in the set H, and let 1Hc be the indicator function of the complement
of H. The transfer operator of the system with hole is given by

LHf = 1HcLf.

Similar to the convergence to equilibrium, we can say that the escape rate of the
system with respect to norms || ||s, || ||w is faster than Ψ if for each f :

||Lnf ||w ≤ Ψ(n)||f ||s.
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We will see in the next proposition that an iterative procedure as the one of the
previous section can be implemented to estimate the escape rate. We will need
assumptions similar to the ones listed before. These are natural assumptions for
open systems constructed from a system satisfying a Lasota Yorke inequality. We
will verify it in some example of piecewise expanding maps with a hole (see Section
5.2).

Theorem 5. With the notations of Theorem 2 let us suppose

• the system with hole satisfies for some λ1 < 1

∀n ≥ 1, ||LnHf ||s ≤ Aλn1 ||f ||s +B||f ||w. (10)

• Lδ(S) ⊆ S and there is an approximation inequality: ∀ g ∈ S

∀n ≥ 1, ||(Lnδ − LnH)g||w ≤ δ(C||g||s + nD||g||w). (11)

• Moreover, let us suppose there exists n1 for which Aλn1
1 < 1 and λ2 < 1 such

that

∀ v ∈ S, ||Ln1

δ (v)||w ≤ λ2||v||w. (12)

Then for any i ≥ 1(
||Lin1(f)||s
||Lin1(f)||w

)
�
(
Aλn1

1 B
δC δn1D + λ2

)i( ||f ||s
||f ||w

)
.

In particular, as before, we have

||Lin1g||s ≤ (1/a)ρi||g||s,

and

||Lin1g||w ≤ (1/b)ρi||g||s.

The proof of the theorem is essentially the same as the one of Theorem 2. We
remark that the main difference between the two propositions is that now we are
looking to the behavior of iterates of LH and Lδ on the whole space S and not only
on the space of zero average measures V .

4. The Ulam method. We now give an example of a finite dimensional approxi-
mation for the transfer operator which is useful in several cases: the Ulam method.

Let us briefly recall the basic notions. Let us suppose now that X is a manifold
with boundary. The space X is discretized by a partition Iδ (with k elements) and
the transfer operator L is approximated by a finite rank operator Lδ defined in the
following way: let Fδ be the σ−algebra associated to the partition Iδ, define the
projection: πδ as πδ(f) = E(f |Fδ), then

Lδ(f) := πδLπδf. (13)

In the literature, it is shown from different points of view that taking finer and
finer partitions, in suitable systems, the behavior of this finite dimensional approx-
imation converges in some sense to the behavior of the original system, including
the convergence of the spectral picture, see, e.g., [11, 5, 10, 20, 3, 7, 3].

We remark that this approximation procedure satisfies the approximation as-
sumption (3) if, for example, Bounded Variation and L1 norms are considered, see
Lemma 14 . This allows the effective use of this discretization in Theorems 2 and
5 for the study of piecewise expanding maps.
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5. Piecewise expanding maps and Lasota Yorke inequalities. Let us con-
sider a class of maps which are locally expanding but possibly discontinuous at some
point. We recall some results, showing that these systems satisfy the assumptions
needed in our main theorems, in particular the Lasota Yorke inequality.

Definition 6. A nonsingular function T : ([0, 1],m) → ([0, 1],m) is said to be
piecewise expanding if

• there is a finite set of points d1 = 0, d2, . . . , dn = 1 such that T |(di,di+1) is C2.

• infx∈[0,1] |DxT | = λ−11 > 2 on the set where it is defined.

It is now well known (see, e.g., [19]) that this kind of map has an absolutely
continuous invariant measure with bounded variation density.

5.1. Lasota Yorke inequality. Let us consider an absolutely continuous measure
µ and the following norm:

||µ||BV = sup |µ(φ′)|
φ∈C1,|φ|∞=1

This is related to the classical definition of bounded variation: it is straightforward
to see that if µ has density f then 2||f ||∞ ≤ ||µ||BV .1

The following inequality can be established (see, e.g., [12], [21]) for the transfer
operator of piecewise expanding maps.

Proposition 7. If T is piecewise expanding as above and µ is a measure on [0, 1]

||Lµ||BV ≤
2

inf T ′
||µ||BV +

2

min(di − di+1)
µ(1) + 2µ(| T

′′

(T ′)2
|).

We remark that, if an inequality of the following form

||Lg|| ≤ 2λ||g||+B′|g|w
is established (with 2λ < 1) then, iterating, we have

||L2g|| ≤ 2λ||Lg||+B′|g|w = 2λ(2λ||Lg||+B′|g|w) +B′|g|w · · ·
and thus

||Lng|| ≤ 2nλn||Lg||+ B′

1− 2λ
|g|w.

5.2. Piecewise expanding maps with holes. Let us consider a piecewise ex-
panding map with a hole that is an interval I. Let us see that if the system without
hole satisfies a Lasota Yorke inequality and is sufficiently expanding, we can deduce
a Lasota Yorke inequality for the system with a hole.

Let indeed consider a starting measure with bounded variation density, f .
If the piecewise expanding map without hole satisfies

||Lg||BV ≤ 2λ||g||BV +B′||g||1,
then the action of the hole is to multiply Lg by 1Ic , introducing two new jumps
which we can bound by ||Lf ||∞ ≤ 1

2 ||Lf ||BV , hence

||LHg||BV ≤ 2||Lg||BV

1 If on an interval I, f ≥ q, then consider a function φ ∈ C1 which is −1 on the left of the
interval and 1 on the right, and increasing inside. Then φ′ ≥ 0,

∫
φ′dx = 2, and

∫
fφ′dx ≥ 2q.

We can do similarly if f ≤ −q, hence ||µ|| ≥ 2||f ||∞. The existence of such interval I of course

cannot be ensured in general. In this case the use of Lebesgue’s density theorem allows us to find
an interval where the same argument applies up to a small error.
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and the system will satisfy

||LHg||BV ≤ 4λ||g||BV + 2B′||g||1.
This is enough to obtain the Lasota Yorke inequality in interesting examples of

piecewise expanding maps with holes (see Section 6.3).
We recall that considering the Ulam discretization for these systems, the needed

approximation inequality follows again, by Lemma 14, and the assumptions of Sec-
tion 3 applies.

Remark 8. We remark that no conditions on the size of the hole are needed for
our method to be applied.

6. Numerical experiments.

6.1. Convergence to equilibrium: Lanford map. In this subsection we esti-
mate the speed of convergence to equilibrium for the map which was investigated
in [18]. The map T : [0, 1]→ [0, 1] is given by

T : x 7→ 2x+
1

2
x(1− x) (mod 1).

To apply Proposition 7 we have to take into account its second iterate F := T 2.
The data below refers to the map F and to the discretization of its transfer

operator and are some input and outputs of our algorithm.

A = 1 λ1 ≤ 0.32
B ≤ 30.6 δ = 1/1048576
λ2 < 0.5 n1 = 18

C ∈ [1.94, 1.95] D ∈ [70.992, 70.993]

Remark 9. Using the estimates developed in [12], an approximation fδ for the
invariant density f can be computed with an explicit bound on the error. The graph
of the map and the computed density are drawn in figure 1a and 1b, respectively.
In the plotted case ||f − fδ||1 ≤ 0.016.
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0 0.2 0.4 0.6 0.8 1

Lanf

(a) Graph of the lanford map
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0.6

0.8
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1.2

0 0.2 0.4 0.6 0.8 1

ṽ

(b) The invariant density

Figure 1. The Lanford map
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The matrix M that corresponds to our data is such that

M �
[
1.24·10−9 30.6
1.86·10−6 0.5013

]
.

Using equation (5) we can compute

ρ ∈ [0.5013, 0.5014].

Remark 10. With a simple computation it is possible to see that the coefficients
a, b (see Theorem 2) associated to the leading eigenvalue ρ are

a =
Aλn1

1 − λ2 − δn1D +
√

(Aλn1
1 − δn1D − λ2)2 + 4δBC

Aλn1
1 − λ2 − δn1D + 2B +

√
(Aλn1

1 − δn1D − λ2)2 + 4δBC

b =
2B

Aλn1
1 − λ2 − δn1D + 2B +

√
(Aλn1

1 − δn1D − λ2)2 + 4δBC
.

In this example,

a ∈ [3.6, 3.7] · 10−6, b ∈ [0.9999963, 0.9999964].

Therefore,if L is the transfer operator associated to F = T 2, using (6) and (7),
we have the following estimates:

‖Lkg‖BV ≤ (270839) · (0.5014)b
k
18c||g||BV ,

‖Lkg‖L1 ≤ (30.7) · (0.5014)b
k
18c||g||BV .

We can also use the coefficients of the powers of the matrix (computed using
interval arithmetics) to obtain upper bounds as in the following table:

iterations bound for ||Lhg||BV bound for ||Lhg||1
h = 36 5.665 · 10−5||g||BV + 15.34||g||1 9.279 · 10−7||g||BV + 2.513 · 10−1||g||1
h = 72 1.424 · 10−5||g||BV + 3.855||g||1 2.333 · 10−7||g||BV + 6.316 · 10−2||g||1
h = 108 3.578 · 10−6||g||BV + 9.689 · 10−1||g||1 5.862 · 10−8||g||BV + 1.588 · 10−2||g||1
h = 144 8.992 · 10−7||g||BV + 2.436 · 10−1||g||1 1.474 · 10−8||g||BV + 3.990 · 10−3||g||1

6.2. Convergence to equilibrium: A Lorenz-type map. In this subsection we
estimate the speed of convergence to equilibrium for a Lorenz type 1-dimensional
map using the recursive estimate established in section 2. To do so, we use the
estimates and the software developed in [12, 14].

The subject of our investigation is the 1 dimensional Lorenz map acting on
I = [0, 1] given by

T (x) =

{
θ · |x− 1/2|α 0 ≤ x < 1/2

1− θ · |x− 1/2|α 1/2 < x ≤ 1

with α = 57/64 and θ = 109/64.
Please note that since the Lorenz 1-dimensional map does not have bounded

derivative, the application of Proposition 7 is not immediate, but the following is
true.

Theorem 11 ([14] Theorem 21). Let T be a 1-dimensional piecewise expanding
map, possibly with infinite derivative. Denote by {di} the set of the discontinuity
points of T , increasingly ordered. Fix a parameter l > 0 and let

Il =

{
x ∈ I |

∣∣∣∣ T ′′(x)

(T ′(x))2

∣∣∣∣ > l

}
.
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We have that T satisfies a Lasota Yorke inequality

||Lµ||BV ≤ λ1||f ||BV +B||f ||1

with

λ1 ≤
1

2

∫
Il

∣∣∣∣ T ′′(x)

(T ′(x))2

∣∣∣∣dx+
2

inf |T ′|
B ≤ 1

1− λ1

(
2

min(di+1 − di)
+ l

)
(and in particular it is possible to choose l in such a way that λ1 < 1).

We apply our strategy to the map F := T 4. Please remark that, once we have
the Lasota-Yorke coefficients and the discretization, the approach is the same as in
Subsection 6.1. The data below refers to the map F and to the discretization of its
transfer operator and are some input and outputs of our algorithm; to compute the
Lasota-Yorke constants we fixed l = 300.

A = 1 λ1 ≤ 0.884
B ≤ 4049 δ = 1/2097152
λ2 < 0.002 n1 = 10

C ∈ [16.24, 16.25] D ∈ [11677.3, 11677.4]

(14)

Remark 12. The graph of the map and its invariant density are drawn in figure
2a and 2b, respectively. Using the estimates developed in [12], if f is the density
of the invariant measure and fδ is the computed density, we have in this case that
||f − fδ||1 ≤ 0.047.
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(a) Graph of the dynamics
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fδ

(b) The invariant density

Figure 2. Lorenz 1-dimensional map

The matrix that corresponds to our data is such that

M �
[

0.2915 4049
7.75·10−8 0.058

]
.

Remark 13. Please note that the Lorenz map we studied has some features that
imply a large coefficient B in the Lasota-Yorke inequality therefore leading to a
slower convergence to the equilibrium in the ||. ||BV norm.
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Using equation (5) we can compute

ρ ∈ [0.386, 0.387].

Using remark 10 we have that the coefficients a, b are such that

a ∈ ([8.12, 8.13] · 10−5) b ∈ [0.9999187, 0.9999188].

Therefore,if L is the transfer operator associated to F = T 4 and using (6) and
(7), we have the following estimates:

‖Lkg‖BV ≤ (16356) · (0.387)b
k
10c||g||BV ,

‖Lkg‖L1 ≤ (4050) · (0.387)b
k
10c||g||BV .

We can also use the coefficients of the powers of the matrix (computed using
interval arithmetics) to obtain upper bounds as in the following table:

iterations bound for ||Lhg||BV bound for ||Lhg||1
h = 20 1.163 · 10−1||g||BV + 1.414 · 103||g||1 2.704 · 10−6||g||BV + 3.469 · 10−2||g||1
h = 40 1.735 · 10−2||g||BV + 2.134 · 102||g||1 4.082 · 10−7||g||BV + 5.025 · 10−3||g||1
h = 60 2.594 · 10−3||g||BV + 31.92||g||1 6.105 · 10−8||g||BV + 7.513 · 10−4||g||1
h = 80 3.880 · 10−4||g||BV + 4.774||g||1 9.131 · 10−9||g||BV + 1.124 · 10−4||g||1

6.3. Escape rates. In this subsection we estimate the escape rates for a non
markov map using the estimates developed in Section 2. We will study

T (x) =
23

5
x mod 1,

with a hole of size 1/8 centered in 1/2.
For the system with holes, the Lasota-Yorke inequality has coefficients

A = 1 λ1 < 20/23 B′ ≤ 7.08.

Below, some of the data (input and outputs) of our algorithm.

A = 1 λ1 ≤ 20/23 ≤ 0.87
B ≤ 7.08 δ = 1/65536
λ2 < 0.5 n1 = 17

C ∈ [14.384, 14.385] D ∈ [20.31, 20.32]

The graph of the map and a non rigorous estimation of the conditionally invariant
density are drawn in figure 3a and 3b, respectively.

The matrix that corresponds to our data is such that

M �
[

0.094 7.08
2.1·10−4 0.506

]
.

Using equation (5) we can compute

ρ ∈ [0.509, 0.5091].

Using remark 10 we have that the coefficients a, b are such that

a ∈ ([5.282, 5.283] · 10−4) b ∈ [0.9994717, 0.9994718].

Therefore,if L is the transfer operator associated to T and using (6) and (7), we
have the following estimates:

‖Lkg‖BV ≤ (1900.2) · (0.5091)b
k
17c||g||BV ,

‖Lkg‖L1 ≤ (7.09) · (0.5091)b
k
17c||g||BV .
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Figure 3. Piecewise linear non-markov map

We can also use the coefficients of the powers of the matrix (computed using
interval arithmetics) to obtain upper bounds as in the following table:

iterations bound for ||Lhg||BV bound for ||Lhg||1
h = 34 1.034 · 10−2||g||BV + 4.241||g||1 1.315 · 10−4||g||BV + 2.569 · 10−1||g||1
h = 68 6.645 · 10−4||g||BV + 1.134||g||1 3.513 · 10−5||g||BV + 6.654 · 10−2||g||1
h = 102 1.559 · 10−4||g||BV + 2.939 · 10−1||g||1 9.111 · 10−6||g||BV + 1.724 · 10−2||g||1
h = 136 4.025 · 10−5||g||BV + 7.615 · 10−2||g||1 2.361 · 10−6||g||BV + 4.467 · 10−3||g||1

Appendix: The approximation inequality from the Lasota Yorke one.
In this section we see that the approximation inequality (3) directly follows from
the Lasota Yorke inequality and from natural assumptions on the approximating
operator (including the Ulam discretization, which is used in the experiments).
Hence the approximation inequality (3) that is assumed in the paper is a natural
assumption in a general class of system and approximations.

Lemma 14. Suppose L satisfies a Lasota Yorke inequality (2) and Lδ is defined by
composing with a “projection” πδ satisfying a certain approximation inequality:

• Lδ = πδLπδ with ||πδv − v||w ≤ δ||v||s for all v ∈ S
• πδ and L are weak contractions for the norm || ||w

then ∀ f ∈ S

||Lnf − Lnδ f ||w ≤ δ
(Aλ1 + 1)A

1− λ1
||f ||s + δBn(Aλ1 + 2)||f ||w.

Proof. It holds that

||(L− Lδ)f ||w ≤ ||πδLπδf − πδLf ||w + ||πδLf − Lf ||w,
but

πδLπδf − πδLf = πδL(πδf − f).

Since both πδ and L are weak contractions and since ||πδv − v||w ≤ δ||v||s,
||πδL(πδf − f)||w ≤ ||πδf − f ||w ≤ δ||f ||s.
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On the other hand,

||πδLf − Lf ||w ≤ δ||Lf ||s ≤ δ(Aλ1||f ||s +B||f ||w),

which gives

||(L− Lδ)f ||w ≤ δ(Aλ1 + 1)||f ||s + δB||f ||w. (15)

Now let us consider (Lnδ − Ln)f . It holds that

||(Lnδ − Ln)f ||w ≤
n∑
k=1

||Ln−kδ (Lδ − L)Lk−1f ||w

≤
n∑
k=1

||(Lδ − L)Lk−1f ||w

≤
n∑
k=1

δ(Aλ1 + 1)||Lk−1f ||s + δB||Lk−1f ||w

≤ δ
n∑
k=1

(Aλ1 + 1)(Aλk−11 ||f ||s +B||f ||w) +B||f ||w

≤ δ (Aλ1 + 1)A

1− λ1
||f ||s + δBn(Aλ1 + 2)||f ||w. �

Remark 15. From the above Lemma we have in this case that C and D in (8) are
given by

C =
(Aλ1 + 1)A

1− λ1
, D = B · (Aλ1 + 2).
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