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Abstract In this paper we prove that a class of skew products maps with non uniformly
hyperbolic base has exponential decay of correlations. We apply this to obtain a logarithm
law for the hitting time associated to a contracting Lorenz attractor at all the points having
a well defined local dimension, and a quantitative recurrence estimation.

Keywords Decay of correlations · Contracting Lorenz attractor · Rovella flow · Skew
product · Logarithm laws

1 Introduction

The term statistical properties of a dynamical system F : M → M , where M is a measurable
space and F a measurable map, refers to the long time behavior of large sets of trajectories
of the system. It is well known that this relates to the properties of the transfer operator, a
linear operator associated to the dynamics that embodies how the measures evolve under the
action of the system.
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Statistical properties are often a better object to be studied than pointwise behavior. In
fact, the future behavior of initial data can be unpredictable, but statistical properties are
often regular and their description simpler. Suitable results can be established in many cases,
to relate the evolution of measures with that of large sets of points (ergodic theorems, large
deviations, central limit, logarithm law, etc...).

In this paper we take the point of view of studying the evolution of measures and its speed
of convergence to equilibrium to understand the statistical properties of a class of dynamical
systems.

We consider a Contracting Geometric Lorenz flow and its perturbations [29], a flow
similar to the Geometric Lorenz Flow, but strictly non-uniformly hyperbolic; following the
cited paper, we have that if the ContractingGeometric Lorenz Flow admits an attractor andwe
take a one parameter family of perturbations, parametrized by a parameter a, the there exists
an 0 < a0 < 1 and E ⊂ [0, a0) a set of parameters called the Rovella parameters, of positive
Lebesgue measure, that admit an attractor (we refer to Sect. 2.3 for a summary of this result).

We prove that the decay of correlations for the map Fa induced on a Poincaré section for
a Rovella parameter a ∈ E , is exponential with respect to Lipschitz observables: this permits
us to study some of the statistical features of the map and the flow.

We follow the line of [4] exploiting the fact that the system has an invariant contracting
foliation and hence can be seen as a skew product whose base transformation has exponential
convergence to equilibrium (ameasure of how fast iterates of the Lebesguemeasure converge
to the physical measure), proving the following.
Theorem A For all Rovella parameters a ∈ E, the two dimensional map Fa associated to
the flow has exponential decay of correlations with respect to the physical measure μa and
Lipschitz observables : there exists C ≥ 0, � ∈ (0, 1) such that

∣
∣
∣
∣

∫

f · (g ◦ Fn
a ) dμa −

∫

g dμa

∫

f dμa

∣
∣
∣
∣
≤ C�n · ||g||Lip · || f ||Lip.

The rapid decay of correlations gives, as a consequence, a quantitative recurrence esti-
mation and an estimation for the scaling behavior of the time which is needed to hit small
targets (Sect. 7); this kind of result is called a logarithm law for the dynamics of the map Fn

a .
A logarithm law is a statement that relates the hitting time to small targets to the local

dimension of the physical measure: consider the family of balls Br (x0), with center x0 and
radius r , and let us denote the time needed for the orbit of a point x to enter in Br (x0) by

τ Fa
r (x, x0) := min{n ∈ N

+ : Fn
a (x) ∈ Br (x0)}.

A logarithm law states that as r → 0 the hitting time scales like 1/μ(Br ).
When x = x0 we define

τ Fa
r (x0) := τ Fa

r (x0, x0),

as an indicator for the recurrence time at the point x0. The exponential decay with respect
to Lipschitz observables permits to prove quantitative recurrence statements; as r → 0 the
recurrence time also scales like 1/μ(Br ).

To express this more precisely let us consider the local dimensions of a measure μ

dμ(x0) = lim sup
r→0

logμ(Br (x0))

log(r)
and dμ(x0) = lim inf

r→0

logμ(Br (x0))

log(r)
(1.1)

representing the scaling rate of the measure of small balls as the radius goes to 0. When the
above limits coincide for μ-almost every point, we set dμ = dμ(x) = dμ(x)1.

1 See Sect. 7 for more details on local dimension and the hitting/return times τr .
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864 S. Galatolo et al.

Theorem B For the Rovella map Fa, a ∈ E, where E is the set of Rovella parameters, and
μFa is the invariant SBR measure for the map Fa. For μFa almost every x0 the following
quantitative recurrence statement holds:

lim inf
r→0

log τ
Fa
r (x0)

− log r
= dμFa

(x0), lim sup
r→0

log τ
Fa
r (x0)

− log r
= dμFa

(x0).

Moreover, for each regular point x0 ∈ �a such that the local dimension of μFa at x0
dμFa

(x0) exists, for the scaling behavior of the hitting time it holds

lim
r→0

log τ
Fa
r (x, x0)

− log r
= dμFa

(x0)

for μFa -almost each x ∈ �a .

The logarithm law for the two dimensional map and the integrability of the return time
to the Poincaré section with respect to μFa imply a logarithm law for the hitting time and
recurrence time of the flow, in a way similar to what was done in [11]. Let x, x0 ∈ � and

τ
Xt
a

r (x, x0) = inf{t ≥ 0|Xt
a(x) ∈ Br (x0)} (1.2)

be the time needed for the Xt
a-orbit of a point x to enter for the first time in a ball Br (x0). The

number τ
Xt
a

r (x, x0) is the hitting time associated to the flow Xt
a and target Br (x0). By this

we can also define and consider a quantitative recurrence indicator τ
Xt
a

r (x0) as done before
(see Eq. (7.1) for the definition).

Theorem C If X t
a is a contracting Lorenz flow with a ∈ E, where E is the set of Rovella

parameters, and μXa is the invariant physical measure for the flow Xt
a, then for each regular

point x0 ∈ R
3 such that dμXa

(x0) exists, for the hitting time behavior it holds

lim
r→0

log τ
Xt
a

r (x, x0)

− log r
= dμXa

(x0) − 1

for μXa -almost each x ∈ R
3. While about recurrence time, for μXa almost every x0

lim inf
r→0

log τ
Xa
r (x0)

− log r
= dμXa

(x0) − 1, lim sup
r→0

log τ
Xa
r (x0)

− log r
= dμXa

(x0) − 1.

This extends the results of [11] to the contracting Geometric Lorenz flow and its pertur-
bations.

1.1 Organization of the Text

This paper is organized as follows. In Sect. 2 we introduce the main object of this article,
the contracting Lorenz flow. In Sect. 3 we make explicit the main properties of the one
dimensional map associated to a contracting Lorenz flow. In Sect. 4 we recall some general
results on convergence and correlation decay for skew-products with contracting fibers from
[4], thatwill be used to prove TheoremA. In Sect. 5we showhow to extend some results about
decay of correlations and convergence to equilibrium for Hölder observables to generalized
bounded variation observables. In Sect. 6 we establish exponential decay of correlations with
respect to Lipschitz observables for the two dimensional map associated to a contracting
Lorenz flow and prove Theorem A. In Sect. 7 we show some consequences of the decay of
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Fig. 1 Behaviour near the origin

correlations proved above as hitting time and quantitative recurrence estimations, proving
Theorem B and C. Finally, in Sect. 1 we explain a result about linearization and properties
of the Poincaré map associated to a contracting Lorenz flow needed along the paper.

2 Contracting Lorenz Flows

In this section we present the family of dynamical systems studied at [29], which are the
object of our paper. The starting point for its definition is the geometric contracting Lorenz
flow, a systemwhich is constructed similarly to the classical geometric Lorenz flow, in which
the uniformly expanding direction is replaced by a strict nonuniformly expanding direction
(for a discussion of this terminology, we refer to the introduction of [21])

We describe informally this construction following [26]. Let (ẋ, ẏ, ż) = (λ1x, λ2y, λ3z)
be a linear vector field in the cube [−1, 1]3, with a singularity at the origin (0, 0, 0). Suppose
the eigenvalues λi , 1 ≤ i ≤ 3 satisfy the relations

− λ2 > −λ3 > λ1 > 0, r = −λ2

λ1
, s = −λ3

λ1
, r > s + 3. (2.1)

It is worth to remark that λ1 + λ3 < 0 in the contracting case while in the definition of
the usual geometric Lorenz flow the condition is λ1 + λ3 > 0. The condition r > s + 3 is
used in [29] to guarantee the existence of a C3 uniformly contracting stable foliation for the
Poincaré first return map of perturbations of the geometric contracting Lorenz flow.

Let �− = {(x, y, 1) | −1/2 ≤ x ≤ 0, |y| ≤ 1/2}, �+ = {(x, y, 1) | 0 ≤ x ≤ 1/2, |y| ≤
1/2} and � = �+ ∪�−. In Fig. 1 we can see the behaviour of the field near the origin. With
some computations, it is possible to see that the flow reaches the transverse section x = 1 (a
similar reasoning works for x = −1) obeying the following law:

F̃(x, y, 1) = (1, yxr , xs) (2.2)

Outside the cube, as in the Geometric Lorenz case, to imitate the random turns of a regular
orbit around the origin and obtain a butterfly shape for our flow, we let the flow return to
the cross section � through a flow described by a suitable composition of a rotation R±, an
expansion E±ρ and a translation T±. The resulting effect of the flow outside the cube when
we arrive on � may be represented by a rotation and the expansion which have the form:
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866 S. Galatolo et al.

R±(x, y, z) =
⎛

⎝

0 0 ±1
0 1 0

±1 0 0

⎞

⎠ , E±,ρ(x, y, z) =
⎛

⎝

ρ 0 0
0 1 0
0 0 1

⎞

⎠ ,

ρ is such that ρ · (1/2)s ≤ 1. This condition is an hypothesis on the behavior of the vector
field outside a neighborhood of the origin, and insures that the image of the map is contained
in�. Further, we can also take ρ sufficiently small to guarantee that the contraction along the
stable foliation is stronger than ρ. The condition on the eigenvalues expressed in Eq. (2.1)
gives the necessary condition to obtain this contraction, see [29, Remarks, p. 240].

The translations T± are chosen in such a way that the unstable direction starting from the
origin is sent to the boundary of � and the images of �̃± are disjoint.

It is possible to find a flow Xt
0 that realizes this construction, as it is described in [11,26].

Composing the expression in (2.2) with R±, E±ρ and T± we write an explicit formula for
F0 : � → �, the Poincaré first return map of the geometric contracting Lorenz flow on the
section �:

F0(x, y) = (T0(x),G0(x, y)) (2.3)

T0(x) =
{−ρ|x |s + 1/2 x > 0

ρ|x |s − 1/2 x < 0
,G0(x, y) =

{

y|x |r + c0 x > 0
−y|x |r + c1 x < 0

,

where c0, c1 are real numbers depending on the choice of the translations T±, r and s are as
in (2.1) and ρ ≤ (1/2)−s .

2.1 Properties of the One-Dimensional Map T0

It is proved in [29, Item 4, p. 240] that the map T0 (an example of which is represented in
Fig. 2) satisfies the following properties:

(a) T0 is onto and piecewise C3, with two branches. The order2 of T ′
0(x) = O(xs−1) at

x = 0 where s = − λ3
λ1

and s − 1 > 0,
(b) T0 has a discontinuity at x = 0, T0(0+) = 1/2, T0(0−) = −1/2,
(c) T ′

0(x) < 0 for every x 
= 0,
(d) maxx>0 T ′

0(x) = T ′
0(1/2) and maxx<0 T ′

0(x) = T ′
0(−1/2).

There exist ρ ≤ (1/2)−s such that also the following hypothesis are satisfied:

(e) The points 1/2 and −1/2 are preperiodic repelling for T0.
(f) The map T0 has negative schwarzian derivative.

Under these hypothesis, in [29] it is proved that X0 has an attractor �0.

Remark 2.1 If ρ = (1/2)−s , then the map T0 is topologically conjugated to the doubling
map and it is called, in the literature, a “full Rovella map” [26]. For a “full Rovella map”,
the existence of an attractor and of an a.c.i.m. for T0 are easily proved.

2.2 Summary of the Construction of the Perturbations of Xt
0

To ease reading, we will summarize some of the results regarding the perturbations of the
flow Xt

0. This construction is going to be made more explicit in the next subsections.
Now suppose Xt

0 is the flow induced by X0 constructed above and Xt is the flow of a
C3-small perturbation X of X0. Then Xt has a hyperbolic singular point O near the origin

2 We say that f (x) is O(g(x)) at x = x0 if there exists M, δ such that | f (x)| ≤ M |g(x)|when 0 < |x−x0| <

δ.
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Fig. 2 A 1-dimensional
contracting Lorenz map

with eigenvalues near those of Xt
0. The fact that Xt is also conjugate to its linear part via

a C1-conjugacy [31] is true if there are no resonances between the eigenvalues. Since this
is an open, dense condition, we may assume it. Moreover the conjugacy is only valid near
O. Since away from the singular point, only a finite amount of time is involved, no problem
arises. Thus � is still a cross section to X and, as proved in [29, Proposition, p. 241], we
may assume there exists a C3 open neighborhood U of X0 such that the flow of each X ∈ U
leaves invariant a C3 nearly vertical foliation FX of � that varies continuously with X . Thus
for all X ∈ U the induced first return map FX : � → � leaves invariant a C3 nearly vertical
foliation FX of � implying that this first return map can be written as

FX (x, y) = (TX (x),GX (x, y)).

2.3 �0 is 2-Dimensionally Almost Persistent

Unlike the case of expanding Lorenz flow, not all X ∈ U , the open C3-neighborhood of
X0 above, presents an attractor, but the existence of the attractor is persisten in a measure
theoretical sense. This was proved in [29]; in this section we will introduce the necessary
definitons and cite the main result.

Let us recall the definition of an attractor and stability in the measure theoretical sense.

Definition 1 Let X be a vector field, with associated flow Xt . A set � is an attractor for X if
it is compact, invariant under Xt , transitive (i.e., contains a dense orbit) and it has a compact
neighborhood U , called local basin of �, such that � = ⋂

t≥0 X
t (U ).

Definition 2 Given a subset S of a finite dimensional Riemannian manifoldM, we say that
x is a density point of S, if, denoting by m the Lebesgue measure on M, Br (x) the ball of
radius r and centered at x , we have:

lim
r→0

m(Br (x) ∩ S)

m(Br (x))
= 1.

Definition 3 Given a subset S of a Banach space B, we say that x ∈ S is a point of k-
dimensional full density of S if there exists a C∞ submanifold N ⊂ B, containing x
and having codimension k, such that for every k- dimensional manifold M intersecting
N transversally at x , then x is a full density point of S ∩ M in M.

Definition 4 An attractor� of a flow Xt ∈ C∞ is k-dimensionally almost persistent if it has
a local basinU such that X is a k-dimensional full density point of the set of flows Y t ∈ C∞
for which �Y = ∩t>0Y t (U ) is an attractor.

In [29] it is proved that the attractor �0 constructed as above is 2-dimensionally almost
persistent in the C3 topology, see item (b) of Theorem at p. 235.

123

Author's personal copy



868 S. Galatolo et al.

The proof of this result is similar to the proof of [5] where it is proved that, for the map
fa(x) = 1 − ax2 there exists a set of parameters of positive Lebesgue measure for which
fa has an absolutely continuous invariant measure. The main step in the proof is to exploit
further the hypotheses on the initial vector field X0 that lead to the expression at Eq. (2.3) for
its Poincaré map. This allows to reduce the problem to the analysis of the one dimensional
map induced by the flow Xt

0. A central result is the following, which proves the persistence
of a C3 stable foliation.

Theorem 1 [29, Proposition, p. 241] There exists an open neighborhood U of X0 such that
the flow of each X ∈ U admits a C3 stable one dimensional foliation in U that varies
continuously with X.

By Frobenius Theorem, for each X ∈ U we can find a transversal section to Xt (and
depending from Xt ), near � and consisting of pieces of leafs of the stable foliation.

After a change of coordinates, for each X ∈ U the first return map associated to X can be
written as

FX (x, y) = (TX (x),GX (x, y)).

The one dimensional map TX induced by FX through the foliation is C3 in x 
= 0, 0 is the
discontinuity and the critical point. Furthermore,we can choose coordinates on the transversal
section such that TX (0+) = −1/2, TX (0−) = 1/2.

Let U be a C3 neighbourhood of X0 as in Theorem 1 and define N as

N = {Y ∈ U | ∃k+, k− so that T k+
Y (1/2), T k−

Y (−1/2)are periodic repelling}.
Note that if U is small enough then N is a codimension 2 submanifold containing X0.

We can now cite the main theorem proved in [29]:

Theorem 2 ([29]) LetM be a 2-dimensional C3-submanifold of U intersectingN transver-
sally, at X0. Let {Xa} be a one parameter family of vector fields, contained in M, such that
the functions a �→ TXa (∓1/2) have derivative 1 at a = 0. Then there is a subset E ⊂ (0, a0)
of parameters called the Rovella parameters, with a0 close to 0 and 0 a full density point of
E such that

lim
a→0

|E ∩ (0, a)|
a

= 1, with �Xa = ∩t≥0X
t
a(U ) an attractor.

This implies that �0 is 2-dimensionally almost persistent.

To ease notation, if {Xa} is a one parameter family of vector fields as above, we denote
by

Fa(x, y) = (Ta(x),Ga(x, y))

the Poincaré map associated to Xa .
In the remaining of the paper, we restrict ourselves to the setting when {Xa} is one of

those one parameter families. We will denote the eigenvalues of Xa at the singularity by
λ1,a, λ2,a, λ3,a .

Lemma 2.2 ([29]) For all Rovella parameter a ∈ E the induced 1-dimensional map Ta
satisfies the following additional properties:

(C1) T ′
a(x) = O(xs(a)−1) as x → 0 where s(a) = −λ3,a/λ1,a.
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(C2) there is λc > 1 such that for all a ∈ E, the points 1/2 and −1/2 have Lyapunov
exponents greater that λc:

(T n
a )′(±1/2) > λnc , for all n ≥ 1;

(C3) there is α > 0 such that for all a ∈ E the basic assumption holds:

|T n−1
a (±1/2)| > e−αn, for all n ≥ 1;

(C4) the forward orbits of the points±1/2 under Ta are dense in [−1/2, 1/2] for all a ∈ E.
(C5) for all a ∈ E, Ta has negative schwarzian derivative.

Remark 2.3 Item C1 depends on the possibility of linearizing the vector field Xa near the
origin; while this hypothesis is not explicit in [29], this is the reason why we assume Xa

to be a C3 one parameter family in the space of C∞ vector fields, i.e., a C3 map 	 : R ⊃
(−ε, ε) → C∞(R3), such that 	(0) = X0.

We refer to Sect. 1 for a discussion about the order of the derivatives of Ta and of Ga .
The hypothesis of having a Ck family in the space of Cr vector fields is widely used in

the contracting Lorenz setting [23,25].

These properties have strong consequences on the statistical properties of the one dimen-
sional Ta , as we will relate in Sect. 3. In our work we show how the statistical properties of
Ta imply some statistical properties for the flow Xt

a associated to a Rovella parameter a ∈ E .

Remark 2.4 The following properties of Xa for all a ∈ [0, a0], used in our paper, follow
from the properties of the linearization near the origin. We refer to Sect. 1 for some explicit
computations; let r(a) = −λ2,a/λ1,a :

(1) ∂Ga
∂y (x, y) = O(xr(a)) as x goes to 0, with r(a) > s(a)+3 which implies that r(a) > 3,

(2) the map Ga is contracting along the leaves of the stable foliation, due to the fact that
λ2,a is near λ2 < 0,

(3) the order of ∂Ga
∂y (x, y) = O(xl(a)) and l(a) ≥ min(s(a) − 1, r(a), r(a) − 1), i.e.,

l(a) ≥ s(a) − 1 > 0
(4) if log(x) is integrable with respect to the invariant measure μa of Ta then the first return

time of Xt
a to � is integrable.

3 Further Properties of the One Dimensional Contracting Lorenz Map

In [22], conditions (C1) and (C3) were used to prove the existence of an ergodic absolutely
continuous invariant probability measure for Rovella parameters. In order to obtain unique-
ness of that measure, Metzger needed to consider a slightly smaller class of parameters (still
with full density at 0), for which conditions (C2) and (C3) imply a strong mixing property.
But, in [2], Alves and Soufi deduce the uniqueness of the ergodic absolutely continuous
invariant probability measure for a ∈ E not assuming any strong mixing property. Hence,
for each a ∈ E , the map Ta has a unique SRB measure μa .

We now recall some recent results of [2] on the statistical properties of the contracting
Lorenz one dimensional maps that we will use in our paper.

To state these statistical properties, we start recalling some definitions and facts about Ta ,
with a a Rovella parameter.
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870 S. Galatolo et al.

Definition 5 We say that Ta is non-uniformly expanding if there is a c > 0 such that for
Lebesgue almost every x ∈ I

lim inf
n→∞

1

n

n−1
∑

i=0

log(T ′
a(T

i
a (x))) > c. (3.1)

Definition 6 We say that Ta has slow recurrence to the critical set if for every ε > 0 there
exists δ > 0 such that for Lebesgue almost every x ∈ I it holds

lim sup
n→∞

1

n

n−1
∑

i=0

− log dδ(T
i
a (x), 0) ≤ ε, (3.2)

where dδ is the δ-truncated distance, defined as

dδ(x, y) =
{ |x − y|, if |x − y| ≤ δ,

1, if |x − y| > δ.
(3.3)

Definition 7 The expansion time function is defined as

Ea(x) = min{N ≥ 1; 1
n

n−1
∑

i=0

log T ′
a(T

i
a (x)) > c,∀n ≥ N },

which is well defined and finite almost everywhere in I , provided (3.1) holds almost every-
where.

Fixing ε > 0 and choosing δ > 0 conveniently, we define the recurrence time function

Ra(x) = min{N ≥ 1; 1
n

n−1
∑

i=0

− log dδ(T
i
a (x), 0) < ε,∀n ≥ N },

which is defined and finite almost every where in I , as long as (3.2) holds almost everywhere.

Definition 8 We define the tail set at time n to be the set of points which at time n have
not yet achieved either the uniform exponential growth of the derivative or the uniform slow
recurrence:

n
a = {x ∈ I ; Ea(x) > n or Ra(x) > n}.

Theorem 3 ([2, Theorem A]) Each Ta, with a ∈ E, is non-uniformly expanding and has
slow recurrence to the critical set. Moreover, there are C > 0 and τ > 0 such that for all
a ∈ E and n ∈ N, it holds

m(n
a ) ≤ Ce−τn, (3.4)

where m is the Lebesgue measure on I .

In [2] the authors deduced several interesting consequences from (3.4), which follow from
Theorem 2 and Theorem 3 of the seminal paper [33]. Their results involve the class of Hölder
continuos functions3 with a given exponent α > 0, denoted by H(α).

The main result in [2] is that for all Rovella parameter a ∈ E :

3 We will denote by

Hölα( f ) = sup
x,y∈I

| f (x) − f (y)|
|x − y|α

and by || f ||H(α) := || f ||∞ + Hölα( f ) the α-Hölder norm.
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(1) Ta has a unique ergodic absolutely continuous invariant probability measure μa ;
(2) the measure μa has exponential decay of correlations for H(α)-observables against

L∞(μa) observables.

A concept strictly related to the decay of correlations is the concept of speed of convergence
to equilibrium.

Definition 3.1 We say that (F, μ) has exponential convergence to equilibrium with respect
to norms ‖.‖a and ‖.‖b, if there areC ∈ R

+, � ∈ (0, 1) such that for f ∈ L1(m), g ∈ L1(μ)

and for all n ≥ 1 it holds

Convn( f, g) :=
∣
∣
∣
∣

∫

f · (g ◦ T n) dm −
∫

g dμ

∫

f dm

∣
∣
∣
∣
≤ C�n · ‖g‖a · ‖ f ‖b.

From (3.4) and [33] it follows that the systems we consider have exponential convergence
to equilibrium with respect to L∞ and Hölder observables (see also [7, Appendix B] for a
standard procedure to get a uniform statement for all the observables in the given classes).

Proposition 3.2 Let a ∈ E, let μa be the absolutely continuous invariant measure of Ta.
Then (Ta, μa) has exponential convergence to equilibrium in the following sense. There are
C ∈ R

+, � ∈ (0, 1) such that for each f ∈ H(α) and g ∈ L∞(μa)

Convn( f, g) ≤ C�n · ‖g‖∞ · || f ||H(α)

In the next section we will see how a result on the convergence to equilibrium for a certain
map can be extended to a skew product with contracting fibers, based on that map.

4 General Result on Convergence and Correlation Decay for
Skew-Products with Contracting Fibers

We recall some general results from [4]. For this, let I = [−1/2, 1/2] the unit interval and
denote by Q = I × I. We consider maps F : Q → Q preserving a regular foliation, which
contracts the leaves and whose quotient map (the induced map on the space of leaves) has
exponential convergence to equilibrium. In this section we will prove that also the map F
has exponential convergence to equilibrium.

Definition 4.1 If f : Q → Q is integrable, we denote by π( f ) : I → I the function
π( f ) : x �→ ∫

I
f (x, t) dt.

Let us consider the following anisotropic norm, considering Lipschitz regularity only on
the vertical, y, direction. Let ‖ · ‖y−Lip be defined by

‖g‖y−Lip = ‖g‖sup + Lipy(g), (4.1)

where

‖g‖sup := sup
x,y∈I

|g(x, y)| and Lipy(g) := sup
x,y1,y2∈I
y1 
=y2

|g(x, y2) − g(x, y1)|
|y2 − y1| . (4.2)

The following is proved in [4, Theorem 1]

Theorem 4.2 Let F : Q � be a Borel function such that F(x, y) = (T (x),G(x, y)). Let
μ be an F-invariant measure with absolutely continuous marginal μT on the x-axis which,
moreover, is T -invariant. Let us suppose that
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(1) (T, μT ) has exponential convergence to equilibrium with respect to the norm ‖ ·‖∞ (the
L∞ norm) and to a norm (on the base space) which we denote by ‖ · ‖Base,

(2) suppose ‖ · ‖Base is stronger than || · ||∞, i.e., ‖ · ‖Base ≥ || · ||∞,
(3) T is nonsingular with respect to the Lesbegue measure, piecewise continuous andmono-

tonic: there is a collection of intervals {Ii }i=1,...,m, ∪Ii = I such that on each Ii , T is
an homeomorphism onto its image,

(4) F is a contraction on each vertical leaf: G is λ -Lipschitz in y with λ < 1.

Then (F, μ) has exponential convergence to equilibrium in the following sense. There are
C ∈ R

+, � ∈ (0, 1) such that

Convn( f, g) ≤ C�n · ‖g‖y−Lip · (||π( f )||Base + || f ||1)
for each f ≥ 0.

Now let us relate convergence to equilibrium to decay of correlations. This will be done
by the following statement (see [4, Theorems 2 and 3])

Theorem 4.3 Let F : Q � be a Borel function such that F(x, y) = (T (x),G(x, y)), μ an
F-invariant probability measure with absolutely continuous T -invariant marginalμT on the
x-axis and satisfying

(1) (T, μT ) has exponential convergence to equilibrium with respect to the norm ‖ ·‖∞ and
to a norm ‖ · ‖Base;

(2) T is nonsingular with respect to the Lesbegue measure, piecewise continuous andmono-
tonic: there is a collection of intervals {Ii }i=1,...,m, ∪Ii = I such that on each Ii , T is
an homeomorphism onto its image.

(3) F is a uniform contraction on each vertical leaf.
(4) Moreover, let us assume that that there are C1, K ∈ R and a seminorm ‖ · ‖� such that

‖π( f ◦ Fn)‖Base+‖ f ◦ Fn‖� ≤C1K
n(‖π( f )‖Base + ‖ f ‖y−Lip + ‖ f ‖�), ∀n ≥ 1.

Then F has exponential decay of correlations: there are C2 > 0,� ∈ (0, 1) such that
∣
∣
∣
∣

∫

f · (g ◦ Fn) dμ −
∫

g dμ

∫

f dμ

∣
∣
∣
∣
≤C2�

n‖g‖y−Lip(‖ f ‖y−Lip+‖π( f )‖Base+‖ f ‖�)

for all f, g : Q → R and n ≥ 0.

The notations ‖·‖Base and ‖·‖� emphatize that these are respectively a norm for functions
on the base space of the skew product, and seminorm for functions on the whole space, the
squareQ. In the next section we will find concrete examples of a norm and a seminorm with
the required properties (the p-variation norm in the next section and the seminorm Var� in
the following one).

5 Decay of Correlations for Adapted Function Spaces

Many results about decay of correlations and convergence to equilibrium are obtained for
Hölder observables. Yet, in systems with discontinuities, this class of functions is not the
most natural, since it is not preserved by the transfer operator. We show how to extend those
results to generalized bounded variation observables. This extension is necessary to apply
Theorem 4.3.
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5.1 Functions of Bounded p-Variation

We recall the main definitions and basic results about bounded p-Variation (see [19]).
Given a function we define its universal p-Variation as the following adaptation of the

usual notion of bounded variation.

Definition 5.1 Let g : [0, 1] → R and let:

Varp(g, x1, . . . , xn) =
⎛

⎝
∑

i≤n

|g(xi ) − g(xi+1)|p
⎞

⎠

1
p

.

The universal p-Variation is:

Varp(g) = sup
P

Varp(g, x1, . . . , xn),

where P is the collection of all the finite subdivisions of [0, 1]. Let
UBVp = {g : Varp(g) < ∞}

be the space of functions of bounded universal p-Variation.

In the followingm be the Lebesguemeasure on the unit interval, ε > 0 and h : [0, 1] → C.
We define

osc(h, ε, x) = ess sup{|h(y1) − h(y2)| : y1, y2 ∈ Bε(x)},
where Bε(x) is the ball centered in x with radius ε , and the essential supremum is taken with
respect to the Lebesgue measure. Now let us define

oscp(h, ε) = ‖osc(h, ε, x)‖p, 1 ≤ p ≤ ∞,

where the p-norm is taken with respect to m.

Remark 5.2 oscp(h, ∗) : (0, A] → [0,∞] is a non decreasing function and oscp(h, ε) ≥
osc1(h, ε).

Fixed 0 ≤ r ≤ 1, set Rp,r,n = {h|∀ε ∈ (0, A], oscp(h, ε) ≤ nεr } and Sp,r =
∪n∈NRp,r,n .

We can now define:

(1) BVp,r as the space of m-equivalence classes of functions in Sp,r
(2) Varp,r (h) = sup0<ε≤A(ε−roscp(h, ε)) (we remark that this definition depends on a

fixed constant A and that Varp,r (h) ≥ Var1,r (h)).
(3) for h ∈ BVp,r we define ‖h‖p,r := Varp,r (h) + ‖h‖p .

It turns out that BVp,r with the norm ||h||p,r is a Banach space; see [19, Thm. 1.13]. In
the following we will fix A = 1.

Proposition 5.3 UBVp ⊆ BVp, 1p
⊆ BV1, 1p

for all 1 ≤ p < ∞. Moreover

Var1, 1p
(h) ≤ Varp, 1p

(h) ≤ 2
1
p Varp(h). (5.1)

In what followswe need to compare the ‖·‖p,r normwith the L∞(m) norm. The following
Lemma will be useful (see [4, Lemma 2]).
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Lemma 5.4 If f ∈ BV1,r (r ≤ 1), then f ∈ L∞(m) and

‖ f ‖∞ ≤ Ar−1 · ‖ f ‖1,r ,
where A is the constant in the definition of ‖ · ‖1,r (see item 2 above).

5.2 Hölder Convergence to Equilibrium Implies Convergence to Equilibrium for
Bounded p-Variation

Suppose we have a system having exponential convergence to equilibrium with H(α) and
L∞ observables, let us estimate the convergence for f ∈ BV1,p and g ∈ L∞.

Proposition 5.5 If for each f ∈ H(α) and g ∈ L∞ we have convergence to equilibrium
with speed � :

Convn( f, g) :=
∣
∣
∣
∣

∫

g ◦ T n f dm −
∫

g dμ

∫

f dm

∣
∣
∣
∣
≤ ||g||∞|| f ||H(α)�(n),

then for each f, g respectively in BV1,α and L∞ it holds

Convn( f, g) ≤ ||g||∞|| f ||1,α6
√

�(n).

Proof Let us consider ρε = 1
2ε 1B(0,ε) a multiple of the characteristic function of an interval

of radius ε, small.
Let us consider f ∈ BV1,α , approximate f with fε = f ∗ ρε (the convolution with ρε)

and estimate the integral:
∣
∣
∣
∣

∫

g ◦ T n f dm

∣
∣
∣
∣
≤

∣
∣
∣
∣

∫

g ◦ T n ( f + fε − fε) dm −
∫

g dμ

∫

f + fε − fε dm

∣
∣
∣
∣

≤
∫

∣
∣g ◦ T n ( f − fε)

∣
∣ dm +

∫

g dμ

∫

| f − fε | dm

+|
∫

g ◦ T n fεdm −
∫

g dμ

∫

fεdm|
≤ 2||g||∞|| f − fε ||1 + ||g||∞|| fε ||H(α)�(n).

Now let us estimate || f − fε ||1

|| f − f ∗ ρε ||1 ≤
∫

I
|
∫

B(0,ε)
[ f (x − y) − f (x)]ρε(y) dy | dx

≤
∫

I
| sup
y∈B(x,ε)

[ f (x − y) − f (x)]| dx
≤ osc1( f, ε).

We bound the Hölder seminorm of fε

Hölα( f ∗ ρε(x)) = sup
x1,x2∈I

|x1 − x2|−α|
∫

B(0,ε)
[ f (x1 − y) − f (x2 − y)]ρε(y)dy|,

by the definition of ρε

|
∫

B(0,ε)
[ f (x1 − y) − f (x2 − y)]ρε(y)dy| ≤

{

2ε−1|x1 − x2| || f ||∞ if |x1 − x2| ≤ ε

2|| f ||∞ if |x1 − x2| > ε
.
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Hence

Hölα( f ∗ ρε(x)) ≤ sup
x1,x2∈I

({ |x1 − x2|−α+12ε−1|| f ||∞ if |x1 − x2| ≤ ε

|x1 − x2|−α2|| f ||∞ if |x1 − x2| ≥ ε.

)

.

It follows
Hölα( f ∗ ρε(x)) ≤ 2ε−α|| f ||∞ ≤ 2ε−α|| f ||1,α.

Summarizing

|
∫

g ◦ T n f dm −
∫

g dμ

∫

f dm|
≤ 2||g||∞|| f − fε ||1 + ||g||∞|| fε ||H(α)�(n)

≤ ||g||∞(2osc1( f, ε) + 4ε−α|| f ||1,α�(n))

≤ ||g||∞(2εα|| f ||1,α + 4ε−α|| f ||1,α�(n))

= ||g||∞|| f ||1,α(2εα + 4ε−α�(n)).

For each n we can take ε such that ε2α = �(n) we have εα = √
�(n) and

∣
∣
∣
∣

∫

g ◦ T n f dm −
∫

g dμ

∫

f dm

∣
∣
∣
∣
≤ 6||g||∞|| f ||1,α

√

�(n).

��

By this proposition it follows that if a system has exponential convergence to equilibrium
with respect to Hölder observables, it has also exponential convergence with respect to
generalized bounded variation ones.

6 Decay of Correlations for the Two Dimensional Contracting Lorenz
Map: Proof of Theorem A

In the following sectionwe explainwhich are the norms involved, in our case, in the statements
of Sect. 4 and we will check that the 2-dimensional Rovella maps satisfies the hypothesis of
our theorem, implying the proof of Theorem A.

As showed in Proposition 3.2 the one-dimensional Rovella map for a Rovella parameter
a ∈ E satisfies exponential convergence to equilibrium with respect to Hölder and L∞
observables. By using the results in Sect. 5 and in particular by Proposition 5.5 we have the
following.

Corollary 6.1 If a is a Rovella parameter, the one dimensional Rovella map satisfies expo-
nential convergence to equilibrium with respect to the norms ||.||1,α and ||.||∞.

We will need another definition of variation for maps with two variables. Similarly to the
one dimensional case, if f : Q → R and xi ≤ x2 ≤ · · · ≤ xn , let us define the variation on
the square of f as

Var�( f, x1, . . . , xn, y1, . . . , yn) =
∑

1≤i≤n

| f (xi , yi ) − f (xi+1, yi )|.

123

Author's personal copy



876 S. Galatolo et al.

We then consider the supremumVar�( f, x1, . . . , xn, y1, . . . , yn) over all subdivisions xi and
all choices of the yi

Var�( f ) = sup
n

(

sup
(xi≤x2≤···≤xn)∈I,(yi )∈I

Var�( f, x1, . . . , xn, y1, . . . , yn)

)

.

We want to apply Theorem 4.3 using || · ||1,α as the norm || · ||Base and Var�(·) as the
seminorm || · ||�. Thus we need to prove that item 4 of Theorem 4.3 is satisfied for this
seminorm; to do so, thanks to [4, Lemma 16] the only thing we need to prove now is the
following.

Lemma 6.2 For each a ∈ [0, a0] we have that Var�(Ga) < ∞

Proof Remembering the definition:

Var�(Ga, x1, . . . , xn, y1, . . . , yn) =
∑

n

|Ga(xi , yi ) − Ga(xi+1, yi )|.

By Remark 2.4 we have that ∂Ga
∂x is bounded for all x ∈ I and there exists M such that
∣
∣
∣
∣

∂Ga

∂x

∣
∣
∣
∣
≤ M |x |s(a)−1,

with s(a) − 1 > 0. Moreover, we can observe that, if x < 0 and x̃ > 0 we have that

|G(x, y) − G(x̃, y)| < 1.

Therefore, if −1/2 = x1 < · · · < xk < 0 < xk+1 < · · · < xn = 1/2 then

k−1
∑

0

|G(xi , yi ) − G(xi+1, yi )| + |G(xk, yi ) − G(xk+1, yi )|

+
n−1
∑

k+1

|G(xi , yi ) − G(xi+1, yi )| ≤

k−1
∑

0

|∂G
∂x

(ξi )||xi+1 − xi | + 1 +
n−1
∑

k+1

|∂G
∂x

(ξi )||xi+1 − xi | ≤ 1 + M,

where ξi ∈ [xi , xi+1] for i 
= k. ��

From this, as in [4], by Theorems 4.2 and 4.3 follows the decay of correlation with respect
to Lipschitz observables, proving Theorem A.

Proposition 6.3 If a is a Rovella parameter, the two dimensional Rovella map Fa has
exponential convergence to equilibrium and exponential decay of correlations: There are
C ∈ R

+, � ∈ (0, 1) such that for n ≥ 1 :
Convn( f, g) ≤ C�n · ‖g‖y−Lip · (||π( f )||1,α + || f ||1)

∣
∣
∣
∣

∫

f · (g ◦ Fn) dμ −
∫

g dμ

∫

f dμ

∣
∣
∣
∣
≤C�n ·‖g‖y−Lip(‖ f ‖y−Lip+‖π( f )‖1,α+Var� f ).
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7 Quantitative Recurrence and Logarithm Law, Proof of Theorem B and
C

In this section we will show some consequences of the decay of correlations proved above.
We show how these results imply hitting time and quantitative recurrence estimations.

Let us consider a discrete time dynamical system (X, T, μ), where (X, d) is a metric
space and T : X → X is a measurable map preserving a finite measure μ. Let us consider
two points x, y in X and the time which is necessary for the orbit of x to approach y at a
distance less than r

τr (x, y) = min{n ∈ N
+ : d(T n(x), y) < r};

if x = y we will use the notation τr (x) := τr (x, x).
We consider the behavior of τr (x, y) as r → 0. In many interesting cases this is a power

law τr (x, y) ∼ r R . When x 
= y the exponent is a quantitative measure of how fast the
orbit starting from x approaches a point y. When x = y the exponent R gives a quantitative
measure of the speed of recurrence of an orbit near to its starting point, and this will be a
quantitative recurrence indicator.

Definition 9 Let ν be a measure on X , metric space. The upper and lower local dimension
are defined as:

dν(x) = lim sup
r→0

log(μ(Br (x)))

log(r)
dν(x) = lim inf

r→0

log(μ(Br (x)))

log(r)
.

If dν(x) = dν(x) we say the local dimension exists at x and denote it by dν(x) = dν(x);
if the local dimension exists and dν(x) is constant for ν a.e. x , we say the system is exact
dimensional.

The results of [28] and [8], give a quantitative estimation for these indicators for rapidly
mixing systems, and can be summarized in the following theorem (see also [12]) that directly
implies Theorem B.

Theorem 7.1 ([8,12,28]) Let (X, T, ν) be a measure preserving system with a decay of
correlations with respect to Lipschitz observables faster than any polynomial rate. Let x, y ∈
X,

(1) if the local dimension dν(y) exists then for ν-almost every x:

lim sup
r→0

log(τr (x, y))

− log(r)
= lim inf

r→0

log(τr (x, y))

− log(r)
= dν(y)

(2) If X ⊆ R
d for some d, then for ν-almost every x such that dν(x) > 0:

lim sup
r→0

log(τr (x))

− log(r)
= dν(x) and lim inf

r→0

log(τr (x))

− log(r)
= dν(x).

These general result can be applied to prove Theorem B.

Proof of Theorem B Observe that for a Rovella two dimensional map Fa , a ∈ E a Rovella
parameter, the SRB measure μFa has exponential decay of correlations with respect to Lip-
schitz observables and that dμFa

(x) > 0 almost everywhere (the projection of the measure
on the basis is absolutely continuous). Applying Theorem 7.1 we have Theorem B. ��

Now we extend the result to the contracting Lorenz flow, following [10,11]; we need to
check that the return time to the section is integrable.
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Proposition 7.2 Let a ∈ E be a Rovella parameter, and let μa be the invariant measure for
the one dimensional map Ta. Then:

∫ 1/2

−1/2
− log |x |dμa ≤ ∞.

Proof In [2] it was proved that for each Rovella parameter the map Ta has slow recurrence
to the critical set (Definition 6) we will use this to give a bound on the integral of log |x |.

First of all, let Iδ := (−δ, δ) and let Jδ = I \ Iδ:
∫

I
− log |x |dμa =

∫

Jδ
− log |x |dμa +

∫

Iδ
− log |x |dμa;

first we will bound
∫

Jδ
− log |x |dμa ≤

∫

Jδ
− log(δ)dμa ≤

∫

I
− log(δ)dμa = − log(δ).

Now we observe that, if we denote by χIδ the characteristic function of Iδ and by dδ the
truncated distance as in Definition 6:

− log |x | · χIδ = − log(dδ(x, 0)),

thus
∫

Iδ
− log |x |dμa =

∫

I
− log |x | · χIδdμa =

∫

I
− log(dδ(x, 0))dμa .

Let now φk(x) = min{− log(dδ(x, 0)), k}; trivially ||φk ||∞ ≤ k, therefore φk ∈ L1(μa)

and

lim
n→∞

1

n

n−1
∑

i=0

φk(T
i
a (x)) =

∫

I
φkdμa,

for μa a.e. x . Moreover, for all x , k and n:

1

n

n−1
∑

i=0

φk(T
i
a (x)) ≤ 1

n

n−1
∑

i=0

− log(dδ(T
i
a (x), 0)).

We argue by contradiction; suppose
∫

I − log(dδ(x, 0))dμa = +∞; therefore

+∞ = lim
k→+∞

∫

I
φk(x)dμa = lim

k→+∞ lim
n→∞

1

n

n−1
∑

i=0

φk(T
i
a (x)) μa − a.e.

≤ lim sup
n→∞

1

n

n−1
∑

i=0

− log(dδ(T
i
a (x), 0)) ≤ ε < +∞

since the slow recurrence to the critical set holds for a set of full Lebesgue measure. ��

Remark 7.3 In particular, since the return time on the section for the Contracting Geometric
Lorenz Flow is controlled by − log |x |/λ1 this implies that the return time on the section for
the Contracting Geometric Lorenz Flow is integrable.
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Remark 7.4 Proposition 7.2 is needed in the Rovella case because the density of μa may be
unbounded near x = 0; this does not happen in the Lorenz case since we have stronger results
concerning the regularity of the density of the invariant measure of the one dimensional map
that cannot be applied in the non uniformly hiperbolic case.

We shownow that the return time on the section is integrable for all theRovella parameters.

Proposition 7.5 If the neighborhood U is small enough, then the return time to the section
is integrable for each Rovella parameter a ∈ E.

Proof Due to the linearization argument in Sect. 1, we know that there exist two constants
C1 and C2 such that the return time to the cross section τX satisfies:

C1 − log |x |
λ̃1

≤ τX (x, y) ≤ C2 − log |x |
λ̃1

.

Since − log |x | is integrable for each Rovella parameter, we have the thesis. ��

Consider a flow Xt in R
3 having a transversal section � whose first return time is inte-

grable. As before let F : � \ → � be the first return map associated. LetμF be an ergodic
invariant measure for F . Now, if we consider a flow having such a map as its Poincaré section
and integrable return time, we can construct an SRB invariant measure μX for the flow. Let
x, x0 ∈ R

3 and
τ Xt

r (x, x0) = inf{t ≥ 0|Xt (x) ∈ Br (x0)}
be the time needed for the X -orbit of a point x to enter for the first time in a ball Br (x0). The
number τ Xt

r (x, x0) is the hitting time associated to the flow Xt and Br (x0).
If the orbit Xt starts at x0 itself let us consider the return time in the ball and denote

τ X
r (x0) = inf{t ∈ R

+ : Xt (x0) ∈ Br (x0), ∃i < t, s.t.Xt (x0) /∈ Br (x0)}. (7.1)

If x, x0 ∈ � and B�
r (x0) = Br (x0) ∩ � we denote

τ�
r (x, x0) = min{n ∈ N+; Fn(x) ∈ B�

r (x0)}
the hitting time associated to the discrete system F .

Given any x we recall that we denote with t (x) the first strictly positive time, such that
Xt (x)(x) ∈ � (the return time of x to �). A relation between τr

X (x, x0) and τ�
r (x, x0) is

proved in [11] (Proposition 5.2). Let x ∈ R
3 and π(x) be the projection on � given by

π(x) = y if x is on the orbit of y ∈ � and the orbit from y to x does not cross � (if x ∈ �

then π(x) = x).

Proposition 7.6 Under the assumptions listed above, there is a full μX measure set B ⊂ R
3

such that if x0 ∈ R
3 is regular and x ∈ B it holds (provided the second limits exist)

lim
r→0

log τ Xt

r (x, x0)

− log r
= lim

r→0

log τ�
r (π(x), π(x0))

− log r
. (7.2)

ByTheoremB, applying this last proposition to the 2-dimensional system (�, Fa, μa) and
the contracting geometric Lorenz flow and its invariant SRB measure, we get the logarithm
law and the quantitative recurrence statement for the flow, i.e., Theorem C.
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Appendix: Linearization and Properties of the Poincaré Map

To study the order of partial derivative of the first return map to the transverse section we use
a C1 linearization near the singularity; we will use Theorem 7.1 p. 257 of [15] in its version
for flows.

Theorem 8.1 Let n ∈ Z
+ be given. Then there exists an integer N = N (n) ≥ 2 such that:

if  is a real non-singular d × d matrix with eigenvalues γ1, . . . , γd satisfying

d
∑

i=1

miγi 
= γk for all k = 1, . . . , d and 2 ≤
d

∑

j=1

mi ≤ N (n)

and if ξ̇ = (ξ) + 	(ξ) and ζ̇ = ζ , where ξ, ζ ∈ R
d and 	 is of class CN for small ||ξ ||

with 	(0) = 0, ∂ξ	(0) = 0; then there exists a Cn diffeomorphism R from a neighborhood
of ξ = 0 to a neighborhood of ζ = 0 such that Rξ(t)R−1 = ζ(t) for all t ∈ R and initial
conditions for which the flows ζ(t) and ξ(t) are defined in the corresponding neighborhood
of the origin.

Since the resonance conditions are open, there exists an N = N (1) such that, if we choose
the eigenvalues of the geometric contracting Lorenz Flow respecting the resonance condi-
tions, there exists aCN neighborhood of X0 such that all the vector fields in the neighborhood
respect the resonance conditions and can be C1-linearized. Generically, the linear part of a
vector field X̃ in such a neighborhood is different from the linear part of X0; our aim is not
to find a common linearization for all the fields in the neighborhood but to ensure the fact
that X̃ is C1-linearizable.

Behaviour Near the Fixed Point

Let X̃ be in a CN neighborhood of X0 such that the resonance condition are still satisfied;
then X̃ can be C1-linearized.

Denote by λ̃1, λ̃2, λ̃3 the eigenvalues of X̃ at the fixed point, and denote by r̃ = −λ̃2/λ̃1
and by s̃ = −λ̃3/λ̃1.

First, we will study the behaviour of the flow in a neighborhood of the singularity and
then use the information about the existence of a foliated atlas to obtain informations on the
order of derivatives for the first return Poincaré maps.

Near the singularity, there exists a coordinate system such that the singularity p is in 0, the
field is givenby X̃ = (λ̃1x, λ̃2y, λ̃3x) and there exists sections �̃ = {z = ε, |x | ≤ ε, |y| ≤ ε},
�̃+ = {x = +ε, } and �̃− = {x = −ε}.

By the same computations as for the geometric contracting Lorenz flow X0 we have that
the map from [−ε, ε] × [−ε, ε] ⊂ �̃ to �̃+ is given by:

F̃(x, y, 1) = (1, G̃(x, y), T̃ (x)) = (ε, ε−r̃ y · xr̃ , ε1−s̃ x s̃),

and that the time taken between �̃ and �̃+ is given by

τ(x, y, 1) = log(ε) − log(|x |)
λ̃1

.

Remark that both arguments work also for �̃−.
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We can choose the neighborhood such that s̃ − 1 > 0 and r̃ − s̃ > 3. Therefore, as x
approaches 0 we have that

∂ T̃

∂x
= O(x s̃−1),

∂G̃

∂x
= O(xr̃−1),

∂G̃

∂y
= O(xr̃ ),

with s̃ > 1, r̃ > 1.

Behaviour Far from the Fixed Point

If N ≥ 3 we know from [29] that all the vector fields in a neighborhood of X0 pre-
serve a stable foliation. Let X̃ be a vector field in a CN neighborhood of X0 such that
the resonance conditions are preserved, and whose flow preserves a stable foliation. Let
FX̃ (x, y) = (TX̃ (x),GX̃ (x, y)) be the first return map of the flow to the section �; we will
study the behaviour of its partial derivatives as x approaches 0.

With an abuse of notation, we will denote by �̃, �̃+ and �̃− the preimages under the
linearizing change of coordinates of the sections �̃, �̃+ and �̃−; the important property is
that these preimages are locally C1-manifolds and that they are made up of pieces of stable
leaves. In particular, we can see �̃+ as a graph of a function of (y, z), where the constant
leaves are given by constant z.

We want to show that, since the flow preserves the stable foliation, then, recalling the
results from Sect. 1 we have that

(1) the order of ∂T
∂x as x goes to 0 is the same as the order of ∂ T̃

∂x , i.e., s̃ − 1

(2) the order of ∂G
∂y is the same as the order of ∂G̃

∂y , i.e., r̃

(3) the order of ∂G
∂x is at least the minimum of the orders of ∂ T̃

∂x ,
∂G̃
∂x ,

∂G̃
∂y , i.e., at least s̃ − 1.

(4) if log(x) is integrable with respect to the invariant measure, the return time to � is
integrable.

Since the flow of X̃ has no singularities besides p, the map ϕ2(y, z) = (μ(z), ν(y, z))
that takes �̃+ into � is a diffeomorphism that sends lines z = const into lines x = const and
the map ϕ1(x, y) = (χ(x), ζ(x, y)) that takes � into �̃ is a map that send lines x = const
into lines x = const.

By direct computation we have that

DFX̃ = Dϕ2 ◦ DF̃ ◦ Dϕ1

=
⎡

⎣

∂μ
∂z

∂ T̃
∂x

∂χ
∂x 0

∂ν
∂y

(

∂G̃
∂x

∂χ
∂x + ∂G̃

∂y
∂ζ
∂y

)

+ ∂ν
∂z

∂ T̃
∂x

∂χ
∂x

∂ν
∂y

∂G̃
∂y

∂ζ
∂y

⎤

⎦ .

Since ϕ2 is a diffeomorphism, therefore ∂ν
∂y · ∂μ

∂z 
= 0, and since ϕ1 is a diffeomorphism
∂χ
∂x · ∂ζ

∂y 
= 0. This proves item (1), (2), (3).

Since the flow has no singularities both the time between � and �̃ and the time between
�̃+ and � are bounded; this implies item (4).
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