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A B S T R A C T

In this paper we present a general, axiomatical framework for the rigorous approximation of invariant densities
and other important statistical features of dynamics. We approximate the system through a finite element
reduction, by composing the associated transfer operator with a suitable finite dimensional projection (a
discretization scheme) as in the well-known Ulam method.

We introduce a general framework based on a list of properties (of the system and of the projection) that
need to be verified so that we can take advantage of a so-called ‘‘coarse-fine’’ strategy. This strategy is a novel
method in which we exploit information coming from a coarser approximation of the system to get useful
information on a finer approximation, speeding up the computation. This coarse-fine strategy allows a precise
estimation of invariant densities and also allows to estimate rigorously the speed of mixing of the system by
the speed of mixing of a coarse approximation of it, which can easily be estimated by the computer.

The estimates obtained her e are rigorous, i.e., they come with exact error bounds that are guaranteed
to hold and take into account both the discretization and the approximations induced by finite-precision
arithmetic.

We apply this framework to several discretization schemes and examples of invariant density computation
from previous works, obtaining a remarkable reduction in computation time.

We have implemented the numerical methods described here in the Julia programming language, and
released our implementation publicly as a Julia package.
1. Introduction

Several important features of the statistical behavior of a dynamical
system are related to the properties of its invariant measures and in
particular to the properties of the so called Physical Invariant Measure.1
The knowledge of the invariant measure of interest, gives information
on the statistical behavior for the long time evolution of the system.
This fact strongly motivates the search for algorithms which are able to
compute quantitative information about invariant measures of physical
interest, and in particular, algorithms giving an explicit bound on the
error which is made in the approximation. The application of such
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Bloco C (Térreo), Cidade Universitária, Brazil.
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1 This is a class of invariant measures representing the statistical behavior of large sets of initial conditions and having particular interest in the applications,
see [43] for a survey on the subject.

rigorously certified estimates allows to get reliable information on the
statistical behavior of the system and perform computer-aided proofs,
establishing rigorously proved statements on the statistical behavior of
the system (see e.g. [1]).

Several levels of precision in the estimation of the approximation
error . The problem of approximating some interesting invariant mea-
sure of a deterministic or random dynamical system is widely stud-
ied in the literature. Some algorithms are proved to converge to the
real invariant measure (up to errors in some given metrics) in some
classes of systems. Sometimes asymptotical estimates on the rate of
vailable online 14 March 2023
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convergence are provided (see e.g. [2–9]); other results and algorithms
give an explicit bound on the error (see e.g. [1,10–16]). This is the
point of view of the present paper.

We are not only interested to the algorithm but also to a suitable
implementation. In fact, implementing such an algorithm in a software
which is able to keep track of the various truncations and numerical
errors in the computation allows the result of a single computation to
be interpreted as a computer-aided proved statement on the behavior of
the observed system, and hence it has a mathematical meaning. In the
literature the dimension of some nontrivial attractors or repellers was
estimated in this way (see e.g. [16–18]), as well as escape rates [19],
linear response [20,21], diffusion coefficients [22,23] or the behavior
of Lyapunov exponents in models of real phenomena [1,24].

It is worth noting that some negative result are known about the
general problem of computing invariant measures up to a small given
error. In [25] it is shown that there are examples of computable2 systems

ithout any computable invariant measure. This phenomenon shows that
here is some subtlety in the general problem of computing invariant
easures up to a given error.

inite element reductions based on a projection and the present paper .
he techniques used in the literature to establish rigorous bounds on
he approximation error are often related to a suitable finite-element
eduction of the transfer operator of the system. In this approach the
ransfer operator is approximated by a finite-rank one. The invariant
easures of the system under study can be seen as fixed points of

ts transfer operator when acting on suitable functional spaces. These
ixed points can then be approximated by the fixed points of the finite-
imensional reduction of the operator. Suitable quantitative fixed-point
tability results can give a bound of this approximation error.

For this purpose, several approaches have been implemented. The
lam method is a classical example of such a finite elements reduction,
nd provides a finite dimensional approximation of the transfer opera-
or with a finite Markov chain obtained by discretizing the space by a
ell subdivision; see Section 6 for a precise definition. In this approach,
nd in other finite-element reductions, the transfer operator is approx-
mated by a finite-dimensional operator defined by the composition of
he original operator with suitable projections to a finite-dimensional
unctional space. In the classical Ulam method, a probability density is
pproximated by a piecewise constant one and the projection is then
conditional expectation made on the cell subdivision of the whole

pace. Other approaches use different approximation schemes, as for
nstance a piecewise linear approximation (see Section 7), piecewise
mooth approximations, or even other approximation schemes based on
ourier analysis or Taylor series [15,26], which are suitable for smooth
ystems. All of these approaches require their own estimates and have
dvantages for certain classes of systems: for instance, approximation
chemes based on the projection to spaces of smooth functions converge
aster when used to approximate smooth systems with smooth invariant
easures. These approaches can be seen as examples of a general con-

truction in which one defines a finite-dimensional reduction of some
perator by composing it with a suitable finite dimensional projection.

In this paper we consider this ‘‘projection based’’ finite-element
eduction point view in general, and show that if the finite element
eduction method satisfies a certain list of hypotheses, then we can
pply a general construction in which the computation of the invariant
ensity up to a small explicit approximation error will work efficiently.

To estimate this approximation error, we will consider the finite
lement reduction of the system as a small perturbation of the system
tself and estimate quantitatively the stability of the invariant measure
f a system up this small perturbation. These kinds of estimates are
lso called quantitative statistical stability estimates. It is known that

2 Computable, here means that the dynamics can be approximated at any
ccuracy by an algorithm, see e.g. [25] for precise definition.
2

n

the quantitative statistical stability of a system is related to the speed
of convergence to equilibrium of the system itself: the faster is this
speed of convergence, the more the system is statistically stable (see
e.g. [27] for a general statement adapted to many convergence rates).3
This is a delicate point in many papers related to rigorous computations
of invariant measures, where the estimate for approximation error
involves an estimate for the convergence to equilibrium of the system.
Establishing an effective (not only asymptotical) estimate for the con-
vergence to equilibrium of the system is not trivial. This problem is
sometimes approached by a-priori estimates which are possible only
on restricted families of systems. For example, in circle expanding
maps such explicit estimates on the convergence to equilibrium can
be done by using Hilbert cones related techniques. In [17] an idea to
overcome this difficulty was proposed, and in this paper a construction
is shown, in which the a priori estimate on the speed of convergence
is replaced by some a posteriori one which is computed on the finite
element reduction of the system. This is a finite dimensional system
(and the transfer operator can be represented by a large and sparse
matrix) and its speed of convergence to equilibrium can be estimated
directly by the computer. This idea allowed [17] to compute with
explicit error bounds invariant densities of quite different systems as
expanding maps, piecewise-expanding ones without a Markov partition
and even non-uniformly expanding ones (examples of Manneville–
Pomeau maps), essentially applying the same construction for each
one of these systems. An estimate of the convergence rate of a finite-
dimensional system, as we need in the ‘‘a posteriori’’ approach, is
always possible, but it can be a challenging task when the related
matrix is large.

In [19], a method to speed up this computation was proposed and
applied to some class of examples. This method exploits the regulariza-
tion properties of the transfer operator to infer the speed of convergence
to equilibrium of a finite-dimensional reduction of the system from
a coarser finite-element reduction (hence reducing the dimension of
the matrix to be considered when estimating the speed of convergence
to equilibrium). We will refer to this kind of approach as a ‘‘coarse-
fine’’ approach. In [1], a similar approach was applied to estimate the
convergence to equilibrium of high-resolution finite-element reductions
(the rank of the reduced operator is of the order of millions) of transfer
operators related to a class of random systems which are models of the
behavior of the famous Belosouv–Zhabotisky chaotic chemical reaction,
proving the existence of a noise-induced phenomenon observed by
numerical simulation in 1983 in the article [28].

In the present paper we propose a general systematic formalization
of this method, adapting it to different kinds of projection based
finite dimensional reductions. We also implemented these ideas in
the Julia language [29], in a package called RigorousInvariant-
Measures.jl, which is part of the JuliaDynamics organization. The
package can be installed through the Julia package manager and the
source code for the development version can be found at https://github.
com/JuliaDynamics/RigorousInvariantMeasures.jl.

Examples of the use of this package can be found in the examples
irectory. Jupyter notebooks detailing its usage were developed for
summer school at Hokkaido University and can be found at https:

/github.com/orkolorko/HokkaidoSchool; Lectures 1 and 2 are intro-
uctory while Lecture 3 and 4 deal with the rigorous approximation
f the invariant density for a deterministic dynamical system and a
andom dynamical system respectively.

3 In our paper we will consider the transfer operator associated to the
ystem acting on different weaker or stronger spaces with norms ‖ ‖𝑤, ‖ ‖𝑠.
ere by speed of convergence to equilibrium we mean the rate of convergence

o the invariant measure 𝜇 of iterates 𝐿𝑛𝜈 of regular initial probability
easures 𝜈 by the transfer operator 𝐿. The speed of convergence to equilibrium
ill be measured as the speed of convergence to 0 of the ratio ‖𝐿𝑛𝜈−𝜇‖𝑤

‖𝜈‖𝑠
. This

otion is also related to the speed of mixing of the system.

https://github.com/JuliaDynamics/RigorousInvariantMeasures.jl
https://github.com/JuliaDynamics/RigorousInvariantMeasures.jl
https://github.com/JuliaDynamics/RigorousInvariantMeasures.jl
https://github.com/orkolorko/HokkaidoSchool
https://github.com/orkolorko/HokkaidoSchool
https://github.com/orkolorko/HokkaidoSchool
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We will apply this new package to a series of examples already stud-
ied in [17], testing systematically the performance of the computations
and showing a major speed-up and increase of precision with the new
package.

Structure of the paper and main results. In Section 2 we describe
the properties we require for our general projection based approxima-
tion schemes and the kind of operators to which we mean to apply
it. We also show the first useful consequences of these properties, as
the fact that the if the original transfer operator satisfy a Lasota–Yorke
inequality, also the finite element reduction of the transfer operator
satisfies it. In Section 3 we show explicit bounds on the approximation
errors made on approximating the fixed points of the original operator
with the fixed points of the finite dimensional reduction. In Section 4
we show how to improve this bound and related estimates on the
convergence to equilibrium by a coarse-fine strategy, in which we
discretize the transfer operator at different resolutions, exploiting the
regularization properties of the operator and using information from
the coarser discretization to understand the behavior of the finer one,
greatly improving the efficiency of the computation.

In Sections 6 and 7 we show two examples of approximation
schemes, with associated functional analytic setting satisfying the ab-
stract approximation setting defined at 2 : the Ulam scheme and
a smoother approximation scheme based on the approximation by
piecewise linear functions.

In Section 8 we discuss some algorithmic aspects of the implementa-
tion of our ideas, in particular about the construction of the discretized
operators and the estimation of norms of powers of discretized opera-
tors. Section 9 presents examples and in Section 10 we present some
final discussion and remarks.

Notation 1.1. In the following, we use 𝐼 for the identity ma-
rix/operator/function (it is typically clear from the context which one
t is), and 𝑒𝑗 for the 𝑗th vector of the canonical basis (i.e., the 𝑗th
olumn of 𝐼).

The symbol 𝑣∗ denotes the conjugate transpose of a vector.
The symbol ‖𝑓‖𝐿𝑝 denotes the 𝐿𝑝 norm of a function (usually

efined on [0, 1]), whereas the symbol ‖𝑣‖𝓁𝑝 denotes the 𝓁𝑝 norm of
a vector 𝑣 ∈ R𝑛.

2. The abstract setting

In the following we will consider suitable operators between normed
vector spaces of functions over a certain compact manifold with bound-
ary 𝑋; the main example is the transfer operator of a nonsingular dy-
namical systems on 𝑋, see Section 5. We will suppose 𝑋 to be endowed
with the normalized Lebesgue measure 𝑚 as a reference measure. And
denote by ‖.‖𝐿1 the norm of the associated space 𝐿1(𝑋,𝑚).

Assumptions on the space 2.1. Let (𝑤, ‖.‖) be a real or complex
Banach space of real or complex functions over 𝑋 containing the
indicatrix 1 of the whole space. Let 𝑠 ⊆ 𝑤 be a subspace of more
egular functions on which a certain seminorm ‖.‖𝑠 is defined. Let
s suppose that (𝑠, ‖.‖𝑠 + ‖.‖) is a Banach space which is compactly

embedded in (𝑤, ‖.‖).
We will suppose that these norms satisfy the following assumptions,

here exists positive constants 𝑆1, 𝑆2 ∈ R and an element 𝑖 ∈  ∗
𝑠 such

hat:

(1) ‖1‖ = 1,
(2) ‖1‖𝑠 = 0,
(3) |𝑖(𝑓 )| ≤ ‖𝑓‖,
(4) ‖.‖𝐿1 ≤ ‖.‖,
(5) ‖.‖ ≤ 𝑆1 ‖.‖𝑠 + 𝑆2 ‖.‖𝐿1 ,
3

(6) i(1) = 1.
xample 2.2. Let 𝑠 = 𝐵𝑉 ([0, 1]), the space of functions of bounded
ariation on [0, 1], equipped with the seminorm ‖.‖𝑠 = Var(.) and the

norm ‖.‖ = ‖.‖𝐿1 , with 𝑆1 = 1, 𝑆2 = 1 and

𝑖(𝑓 ) = ∫

1

0
𝑓 𝑑𝑚,

here 𝑚 is the Lebesgue measure on [0, 1].

Example 2.3. Let 𝑠 = Lip([0, 1]), the space of Lipschitz continuous
functions on [0, 1], equipped with the seminorm ‖.‖𝑠 = Lip(.) and the
norms ‖.‖ = ‖.‖∞, with 𝑆1 = 1, 𝑆2 = 1 and

𝑖(𝑓 ) = ∫

1

0
𝑓 𝑑𝑚,

where 𝑚 is the Lebesgue measure on [0, 1].

Assumptions on the operator 2.4. Let 𝐿 be an operator acting on
𝑠 such that

• 𝑖(𝐿𝑓 ) = 𝑖(𝑓 ),
• ‖𝐿‖ < ∞,

and suppose that there are 𝐴,𝐵,𝑊 ∈ R, with 𝐴 < 1 such that for each
𝑛 ≥ 0

‖𝐿𝑓‖1 ≤ ‖𝑓‖1 (1)
‖𝐿𝑓‖𝑠 ≤ 𝐴 ‖𝑓‖𝑠 + 𝐵 ‖𝑓‖𝐿1 (2)

‖𝐿𝑛𝑓‖ ≤ 𝑊 ‖𝑓‖ (3)

respectively for all functions in 𝐿1 and in 𝑠. We say such an operator
satisfies a one step Lasota–Yorke inequality.

Remark 2.5. The Lasota–Yorke inequality implies that 𝐿 has a ‘reg-
ularizing’ behavior, up to a certain point. The general form of the
Lasota–Yorke inequality is the following: there are 𝜆 < 1, 𝐴′, 𝐵 ≥ 0
s.t. for each 𝑓 ∈ 𝑠 and 𝑛 ≥ 0

‖𝐿𝑛𝑓‖𝑠 ≤ 𝐴′𝜆𝑛 ‖𝑓‖𝑠 + 𝐵 ‖𝑓‖𝐿1 . (4)

An estimate of this kind can be established in many systems having
some form of uniform expansiveness, even in the presence of disconti-
nuities or piecewise hyperbolic behavior. We remark that in this case
a suitable iterate of 𝐿 satisfies (2). This is usually sufficient for the
computation of invariant densities of a system, as the invariant density
of the original system is also invariant for the iterate.

We remark that since ‖𝑓‖ ≥ ‖𝑓‖𝐿1 , (2) also implies

‖𝐿𝑓‖𝑠 ≤ 𝐴 ‖𝑓‖𝑠 + 𝐵 ‖𝑓‖ (5)

for all functions 𝑓 ∈ 𝑠.

A consequence of (2) is a simple regularity estimate on the fixed
points of 𝐿 which will play an important role in our estimation proce-
dure.

Corollary 2.6. If 𝐿 satisfies a one step Lasota–Yorke inequality and 𝑢 is
a fixed point of 𝐿:

‖𝑢‖𝑠 ≤
𝐵

1 − 𝐴
‖𝑢‖𝐿1 . (6)

We are interested to compute the invariant density by a suitable
finite element reduction of our system. This finite element reduction
will be realized by a suitable projection on a finite dimensional space.
We now formalize the requirements we ask for this projection.

Definition 2.7. Let 𝑛 ∈ N, and 𝑃ℎ be a rank 𝑛 linear operator defined
on 𝑠, with ℎ ∶= 1∕𝑛.

We say that 𝑃ℎ is a compatible discretization if there exists 𝐾 and
𝐸 such that:
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(1) 𝑃ℎ = 𝑃 2
ℎ , i.e., 𝑃ℎ is a projection.

(2) ‖

‖

𝑃ℎ𝑓‖‖ ≤ ‖𝑓‖ for any function 𝑓 ∈ 𝑠.
(3) ‖

‖

𝑃ℎ𝑓‖‖𝑠 ≤ ‖𝑓‖𝑠 for any function 𝑓 ∈ 𝑠.
(4) ‖

‖

𝑃ℎ𝑓 − 𝑓‖
‖

≤ 𝐾ℎ ‖𝑓‖𝑠.
(5) ‖

‖

𝑃ℎ𝑓‖‖𝐿1 ≤ ‖𝑓‖𝐿1 + 𝐸ℎ ‖𝑓‖𝑠
(6) ‖

‖

𝑃ℎ𝑓 + 𝑖(𝑓 − 𝑃ℎ𝑓 )‖‖𝐿1 ≤ ‖𝑓‖𝐿1 + 𝐸ℎ ‖𝑓‖𝑠.

Remark 2.8. In general, we could relax Items 4, 5 6, substituting ℎ
by ℎ𝛼 , with 𝛼 > 0 in the whole paper, or more generally substitute 𝐾 ⋅ℎ
and 𝐸 ⋅ ℎ by functions 𝐾(ℎ) and 𝐸(ℎ) that go to 0 fast enough as ℎ
goes to 0; this is not needed for the projections and functional spaces
we study in this paper, but most of the theory adapts to these more
general conditions with few differences.

Remark 2.9. Condition 6 in Definition 2.7 is used to control the
error when the discretization of the operator is not 𝑖-preserving (see
Definition 2.14 and Remark 2.15).

Definition 2.10. We will call the finite dimensional space ℎ ∶=
𝑃ℎ(𝑠) the approximating space.

The strong norm, the weak norm and the 𝐿1 norm induce norms on
ℎ, that will use the same notation.

Assumptions on the approximating space 2.11. We assume that the
norms on ℎ satisfy the following inequality; there exist 𝑀 and 𝛼 such
that for each 𝑓 ∈ ℎ

‖𝑓‖𝑠 ≤
1
ℎ𝛼

𝑀 ‖𝑓‖ . (7)

emark 2.12. Such an inequality is usually false on 𝑠, but the
pproximating space ℎ is finite dimensional. If we let ‖𝑓‖𝑛𝑠 = ‖𝑓‖𝑠 +
𝑓‖, this is a norm on ℎ and there exists constants 𝛬(ℎ), 𝛩(ℎ), depend-

ing on ℎ, such that

𝛬(ℎ) ‖𝑓‖ ≤ ‖𝑓‖𝑛𝑠 ≤ 𝛺(ℎ) ‖𝑓‖ ;

remark that as ℎ = 1∕𝑛 goes to 0, 𝛺(ℎ) may go to infinity.
The rate at which 𝛺(ℎ) goes to infinity depends on the chosen

orms and approximation schemes. For the schemes presented in the
urrent paper 𝛩(ℎ) = 𝑀∕ℎ; this is not true in general, in other cases,
s in Chebyshev and Fourier discretization 𝛩(ℎ) may grow faster as

shown by Markov–Bernstein inequalities [30]; as an example, suppose
𝑠 = 𝐶1([0, 1]), ‖𝑓‖𝑠 = ‖

‖

𝑓 ′
‖

‖∞, ‖𝑓‖ = ‖𝑓‖∞ and 𝑃𝑛 is the map that
associates to 𝑓 its Chebyshev interpolant of degree 𝑛.

In this case, by ‖

‖

𝑓 − 𝑃𝑛𝑓‖‖ ≤ 𝑂(ℎ) ‖𝑓‖𝑠 but, by Markov–Bernstein
‖

‖

𝑝′‖
‖∞ ≤ 𝑛2 ‖𝑝‖∞ ,

for all 𝑝 polynomial of degree at most 𝑛, i.e., 𝛩(ℎ) = 1∕ℎ2.

Remark 2.13. Another possible generalization is to allow

‖𝑓‖𝐿1 ≤ 𝑀̃‖𝑓‖,

instead of fixing 𝑀̃ to be equal to 1 as in Assumption 2.1. Again, this
is not needed in our current paper, but our methods can be adapted to
this case.

Definition 2.14. Given a compatible discretization 𝑃ℎ we define the
discretized operator to be

𝐿ℎ ∶ ℎ → ℎ, 𝐿ℎ ∶= 𝑃ℎ𝐿𝑃ℎ,

and we define the 𝑖-preserving discretized operator to be

𝑄ℎ ∶ ℎ → ℎ, 𝑄ℎ𝑓 ∶= 𝐿ℎ𝑓 + 1 ⋅ (𝑖(𝑓 ) − 𝑖(𝐿ℎ𝑓 )). (8)

Remark 2.15. In the two explicit discretizations presented in this
paper, 𝑖 is the integral with respect to the Lebesgue measure. The name
𝑖-preserving may be interpreted, in these discretizations, as a nickname
4

for integral preserving. w
Remark 2.16. Depending on the chosen compatible discretization, 𝐿ℎ
may preserve 𝑖. In this case 𝑄ℎ and 𝐿ℎ are going to denote the same
operator.

Remark 2.17. From Assumption 2.1 item (2), follows that:

‖

‖

𝑄ℎ𝑓‖‖𝑠 ≤ ‖

‖

𝐿ℎ𝑓‖‖𝑠 . (9)

From the properties of a compatible discretization follows a straight-
forward result on the operators 𝐿ℎ and 𝑄ℎ.

Corollary 2.18. Let 𝑃ℎ be a compatible discretization, and suppose that
𝐿 satisfies a one step Lasota–Yorke inequality (2) with coefficients 𝐴 and
𝐵. Then, if ℎ is small enough, a one step Lasota–Yorke inequality holds for
𝐿ℎ and 𝑄ℎ: for all 𝑓 ∈ 𝑠

‖

‖

𝑄ℎ𝑓‖‖𝑠 ≤ ‖

‖

𝐿ℎ𝑓‖‖𝑠 ≤ (𝐴 + 𝐸ℎ𝐵) ‖𝑓‖𝑠 + 𝐵 ‖𝑓‖𝐿1 . (10)

Moreover, for all 𝑓ℎ ∈ ℎ, we have a stronger one step Lasota–Yorke
inequality, since 𝑃ℎ𝑓ℎ = 𝑓ℎ:

‖

‖

𝑄ℎ𝑓ℎ‖‖𝑠 ≤ ‖

‖

𝐿ℎ𝑓ℎ‖‖𝑠 ≤ 𝐴 ‖

‖

𝑓ℎ‖‖𝑠 + 𝐵 ‖

‖

𝑓ℎ‖‖𝐿1 . (11)

Proof. For 𝑓 ∈ 𝑠 and the properties of a compatible discretization
we have that

‖

‖

𝐿ℎ𝑓‖‖𝑠 = ‖

‖

𝑃ℎ𝐿𝑃ℎ𝑓‖‖𝑠 ≤ ‖

‖

𝐿𝑃ℎ𝑓‖‖𝑠 ≤ 𝐴 ‖

‖

𝑃ℎ𝑓‖‖𝑠 + 𝐵 ‖

‖

𝑃ℎ𝑓‖‖𝐿1

≤ 𝐴 ‖𝑓‖𝑠 + 𝐵(𝐸ℎ ‖𝑓‖𝑠 + ‖𝑓‖𝐿1 );

if 𝑓ℎ ∈ ℎ we have that 𝑃ℎ𝑓ℎ = 𝑓ℎ, from this follows:

‖

‖

𝐿ℎ𝑓ℎ‖‖𝑠 = ‖

‖

𝑃ℎ𝐿𝑃ℎ𝑓ℎ‖‖𝑠 = ‖

‖

𝑃ℎ𝐿𝑓ℎ‖‖𝑠 ≤ 𝐴 ‖

‖

𝑓ℎ‖‖𝑠 + 𝐵 ‖

‖

𝑓ℎ‖‖𝐿1 . □

Corollary 2.19. Applying repeatedly the Lasota–Yorke inequality of
Corollary 2.18, we get for all 𝑘 ∈ N and 𝑓ℎ ∈ ℎ

‖

‖

‖

𝑄𝑘
ℎ𝑓ℎ

‖

‖

‖𝑠
≤ 𝐴𝑘

‖

‖

𝑓ℎ‖‖𝑠 +
𝐵

1 − 𝐴
max
𝑖
(‖‖
‖

𝑄𝑖
ℎ
‖

‖

‖𝐿1 ) ‖‖𝑓ℎ‖‖𝐿1 .

If 𝑓 ∈ 𝑠 we have that 𝑄ℎ𝑓 ∈ ℎ, therefore

𝑄𝑘
ℎ𝑓

‖

‖

‖𝑠
≤ 𝐴𝑘−1(𝐴 + 𝐸ℎ𝐵) ‖𝑓‖𝑠 +

𝐵
1 − 𝐴

max
𝑖
(‖‖
‖

𝑄𝑖
ℎ
‖

‖

‖𝐿1 ) ‖𝑓‖𝐿1 .

roof. If 𝑓ℎ ∈ ℎ then

𝑄𝑘
ℎ𝑓ℎ

‖

‖

‖𝑠
≤ 𝐴 ‖

‖

‖

𝑄𝑘−1
ℎ 𝑓ℎ

‖

‖

‖𝑠
+ 𝐵 ‖

‖

‖

𝑄𝑘−1
ℎ 𝑓ℎ

‖

‖

‖𝐿1

≤ 𝐴(𝐴 ‖

‖

‖

𝑄𝑘−2
ℎ 𝑓ℎ

‖

‖

‖𝑠
+ 𝐵 ‖

‖

‖

𝑄𝑘−2
ℎ 𝑓ℎ

‖

‖

‖𝐿1 ) + 𝐵 ‖

‖

‖

𝑄𝑘−1
ℎ 𝑓ℎ

‖

‖

‖𝐿1

≤ ⋯ ≤ 𝐴𝑘
‖

‖

𝑓ℎ‖‖𝑠 + 𝐵
𝑘−1
∑

𝑗=1
𝐴𝑘−1−𝑗 ‖

‖

‖

𝑄𝑗
ℎ𝑓ℎ

‖

‖

‖𝐿1

≤ 𝐴𝑘
‖

‖

𝑓ℎ‖‖𝑠 +
𝐵

1 − 𝐴
max
𝑖
(‖‖
‖

𝑄𝑖
ℎ
‖

‖

‖𝐿1 ) ‖‖𝑓ℎ‖‖𝐿1 .

If 𝑓 ∈ 𝑠 we have that 𝑄ℎ𝑓 ∈ ℎ, therefore

𝑄𝑘
ℎ𝑓

‖

‖

‖𝑠
= ‖

‖

‖

𝑄𝑘−1
ℎ 𝑄ℎ𝑓

‖

‖

‖𝑠

≤ 𝐴𝑘−1
‖

‖

𝑄ℎ𝑓‖‖𝑠 + 𝐵
𝑘−2
∑

𝑗=1
𝐴𝑘−1−𝑗 ‖

‖

‖

𝑄𝑗+1
ℎ 𝑓‖‖

‖𝐿1

≤ 𝐴𝑘−1(𝐴 + 𝐸ℎ𝐵) ‖𝑓‖𝑠 + 𝐵
𝑘−1
∑

𝑗=1
𝐴𝑘−1−𝑗 ‖

‖

‖

𝑄𝑗+1
ℎ 𝑓‖‖

‖𝐿1

≤ 𝐴𝑘−1(𝐴 + 𝐸ℎ𝐵) ‖𝑓‖𝑠 +
𝐵

1 − 𝐴
max
𝑖
(‖‖
‖

𝑄𝑖
ℎ
‖

‖

‖𝐿1 ) ‖𝑓‖𝐿1 . □

emark 2.20. Remark that if the Lasota–Yorke inequality (10) is
atisfied for a discretization of size 𝑛 = 1∕ℎ then for all discretizations
ith 𝑛̃ > 𝑛 we have that 1∕𝑛̃ = ℎ̃ < ℎ and so inequality (10) is satisfied

or all finer discretizations and for the original operator 𝐿. This permits
s to prove, in a similar fashion as Corollary 2.19 that we have a
niform iterated Lasota–Yorke inequality. This is the main hypothesis
e need to satisfy so that the spectral stability results of [31] holds.
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3. Fixed point error estimation

In this section, we describe an explicit strategy to derive certified
approximations of the fixed point 𝑢 of 𝐿 by approximating it with an
element 𝑢ℎ of the approximating space.

The following theorems give a slightly improved version of [17,
Theorem 3.1] in which we allow for an inexactly computed eigenvector
𝑢ℎ and we take more care about the multiplicative factors ‖

‖

𝑃ℎ
‖

‖

.

Definition 3.1. Let us consider the generalized ‘‘zero average’’ spaces

 0
𝑤 ∶= {𝑣 ∈ 𝑤 ∣ 𝑖(𝑣) = 0},

 0
𝑠 ∶= {𝑣 ∈ 𝑠 ∣ 𝑖(𝑣) = 0}.

When dealing with the discretized operator 𝑄ℎ, we denote by

 0
ℎ ∶=  0

𝑠 ∩ℎ.

Remark 3.2. When restricted to ℎ, the strong and the weak norm
are equivalent, therefore  0

ℎ can be equivalently defined as

 0
ℎ ∶=  0

𝑤 ∩ℎ.

Remark 3.3. In Examples 2.2, 2.3, the space  0
𝑤 is the space of average

0 functions, i.e.,

 0
𝑤 = 𝑤 ∩ {𝑓 ∈ 𝐿1([0, 1]) ∣ ∫ 𝑓𝑑𝑚 = 0}.

hen
0
ℎ = {𝑢ℎ ∈ ℎ ∣ ℎ

∑

𝑖
𝑢𝑖},

here 𝑢𝑖 are the coordinates of 𝑢ℎ.

heorem 3.4. In the framework of the assumptions on the spaces,
perators and discretizations stated in Section 2, Let 𝐿 be an operator
ith a fixed point 𝑢, normalized in a way that 𝑖(𝑢) = 1, let 𝑄ℎ be an 𝑖-
reserving discretized operator, and let 𝑢ℎ ∈ ℎ be any vector such that
𝑄ℎ𝑢ℎ − 𝑢ℎ‖‖ ≤ 𝜀, normalized so that 𝑖(𝑢) = 𝑖(𝑢ℎ) = 1. Let 𝐶𝑘, for each

𝑘 ∈ N, be a constant such that
‖

‖

‖

‖

𝑄𝑘
ℎ| 0

ℎ

‖

‖

‖

‖

≤ 𝐶𝑘, 𝑘 ∈ N (12)

and suppose that ∑∞
𝑘=0 𝐶𝑘 < ∞. Then,

‖

‖

𝑢 − 𝑢ℎ‖‖ ≤

( ∞
∑

𝑘=0
𝐶𝑘

)

(2𝐾ℎ (1 + ‖𝐿‖) ‖𝑢‖𝑠 + 𝜀). (13)

Before the proof of the theorem we need to perform some technical
estimates.

Lemma 3.5. Let 𝐿 ∶ 𝑠 → 𝑠 be an 𝑖-preserving operator, 𝐿ℎ and
𝑄ℎ𝑓 discretized operators as in Definition 2.14 obtained by a compatible
discretization as in Definition 2.7. Then,

‖

‖

𝑄ℎ𝑓 − 𝐿𝑓‖
‖

≤ 2𝐾ℎ
(

‖𝐿‖ ‖𝑓‖𝑠 + ‖𝐿𝑓‖𝑠
)

.

Proof. The inequality follows by combining

‖

‖

𝑄ℎ𝑓 − 𝐿𝑓‖
‖

= ‖

‖

𝐿ℎ𝑓 − 𝐿𝑓‖
‖

+ ‖

‖

1 ⋅ (𝑖(𝐿𝑓 ) − 𝑖(𝐿ℎ𝑓 ))‖‖
≤ 2 ‖

‖

𝐿ℎ𝑓 − 𝐿𝑓‖
‖

where we used 2.1, item 1 and 3, and

‖

‖

𝐿ℎ𝑓 − 𝐿𝑓‖
‖

≤ ‖

‖

𝑃ℎ𝐿(𝑃ℎ − 𝐼)𝑓‖
‖

+ ‖

‖

(𝑃ℎ − 𝐼)𝐿𝑓‖
‖

≤ ‖𝐿‖𝐾ℎ ‖𝑓‖𝑠 +𝐾ℎ ‖𝐿𝑓‖𝑠 . □

Corollary 3.6. If 𝑢 ∈ 𝑠 is a fixed point of the operator 𝐿, then

‖ ‖
5

‖

𝑄ℎ𝑢 − 𝑢
‖

≤ 2𝐾ℎ (‖𝐿‖ + 1) ‖𝑢‖𝑠 .
Proof. By the previous lemma

‖

‖

𝑄ℎ𝑢 − 𝑢‖
‖

= ‖

‖

𝑄ℎ𝑢 − 𝐿𝑢‖
‖

≤ 2𝐾ℎ
(

‖𝐿‖ ‖𝑢‖𝑠 + ‖𝐿𝑢‖𝑠
)

,

observing that ‖𝐿𝑢‖𝑠 = ‖𝑢‖𝑠 we have the thesis. □

Proof of Theorem 3.4. Let 𝑣 = 𝑢 − 𝑢ℎ ∈  0
ℎ . Note that from

Corollary 3.6 we get

‖

‖

𝑄ℎ𝑣 − 𝑣‖
‖

≤ ‖

‖

𝑄ℎ𝑢 − 𝑢‖
‖

+ ‖

‖

𝑄ℎ𝑢ℎ − 𝑢ℎ‖‖ ≤ 2𝐾ℎ (1 + ‖𝐿‖) ‖𝑢‖𝑠 + 𝜀.

By the triangle inequality,

‖𝑣‖ ≤ ‖

‖

𝑄ℎ𝑣 − 𝑣‖
‖

+ ‖

‖

‖

𝑄2
ℎ𝑣 −𝑄ℎ𝑣

‖

‖

‖

+ ‖

‖

‖

𝑄3
ℎ𝑣 −𝑄2

ℎ𝑣
‖

‖

‖

+⋯ + ‖

‖

‖

𝑄𝑚
ℎ 𝑣 −𝑄𝑚−1

ℎ 𝑣‖‖
‖

+ ‖

‖

‖

𝑄𝑚
ℎ 𝑣

‖

‖

‖

,

and since lim𝑚→∞
‖

‖

‖

𝑄𝑚
ℎ 𝑣

‖

‖

‖

≤ lim𝑚→∞ 𝐶𝑚 ‖𝑣‖ = 0 we can take the limit
obtaining

‖𝑣‖ ≤
∞
∑

𝑘=0

‖

‖

‖

𝑄𝑘
ℎ(𝑄ℎ𝑣 − 𝑣)‖‖

‖

≤

( ∞
∑

𝑘=0
𝐶𝑘

)

‖

‖

𝑄ℎ𝑣 − 𝑣‖
‖

. (14)

ombining these inequalities we get:

𝑣‖ ≤

( ∞
∑

𝑘=0
𝐶𝑘

)

(2𝐾ℎ (1 + ‖𝐿‖) ‖𝑢‖𝑠 + 𝜀). □

While Theorem 3.4 requires an infinite sum, the following lemma
hows that it is sufficient to find a value 𝑚 with 𝐶𝑚 < 1 to prove the
onvergence of the series.

emma 3.7. Let 𝑄ℎ be an 𝑖-preserving discretized operator, and 𝐶𝑘 be
onstants such that

‖

‖

‖

‖

𝑄𝑘
ℎ| 0

ℎ

‖

‖

‖

‖

≤ 𝐶𝑘 for each 𝑘 = 0, 1, 2,… . Suppose that

𝑚 < 1 for some positive integer 𝑚. Then,

(1) ∑∞
𝑘=0 𝐶𝑘 ≤ 1

1−𝐶𝑚
(𝐶0 + 𝐶1 +⋯ + 𝐶𝑚−1) < ∞;

(2) there are real constants 𝐶 > 0, 𝜆2 ∈ (0, 1) such that
‖

‖

‖

‖

𝑄𝑘
ℎ| 0

ℎ

‖

‖

‖

‖

≤ 𝐶𝜆𝑘2
for each 𝑘.

Proof. Let 𝑘 ∈ N, and use Euclidean division with remainder to write
𝑘 = 𝑞𝑚 + 𝑟. In particular, we have 𝑟 ∈ {0, 1,… , 𝑚 − 1} and 𝑘 < (𝑞 + 1)𝑚.

Since 𝑄ℎ is 𝑖-preserving, 𝑄ℎ( 0
ℎ ) ⊆  0

ℎ , hence we can write
‖

‖

‖

‖

𝑄𝑘
ℎ| 0

ℎ

‖

‖

‖

‖

≤
‖

‖

‖

‖

(𝑄𝑚
ℎ | 0

ℎ
)𝑞(𝑄𝑟

ℎ| 0
ℎ
)
‖

‖

‖

‖

≤ 𝐶𝑞
𝑚𝐶𝑟.

Then the first estimate follows by summing over all possible 𝑘
∞
∑

=0
𝐶𝑘 ≤ 𝐶0

𝑚(𝐶0 + 𝐶1 +⋯ + 𝐶𝑚−1) + 𝐶1
𝑚(𝐶0 + 𝐶1 +⋯ + 𝐶𝑚−1)

+ 𝐶2
𝑚(𝐶0 + 𝐶1 +⋯ + 𝐶𝑚−1) +⋯

≤ (1 + 𝐶𝑚 + 𝐶2
𝑚 +⋯)(𝐶0 + 𝐶1 +⋯ + 𝐶𝑚−1).

he second estimate follows instead from noting that

𝑞
𝑚𝐶𝑟 ≤ (𝐶𝑚)

𝑘
𝑚−1 max(𝐶0, 𝐶1,… , 𝐶𝑚−1),

and thus we can take

𝐶 =
max(𝐶0, 𝐶1,… , 𝐶𝑚−1)

𝐶𝑚
, 𝜆2 = (𝐶𝑚)

1
𝑚 . □

The first estimate is tighter and is the one that we shall use in
numerical computation; the second one is looser but it gives an explicit
bound with a geometric series.

Remark 3.8. The sequence
‖

‖

‖

‖

𝑄𝑘
ℎ| 0

ℎ

‖

‖

‖

‖

is related to the speed of
convergence to equilibrium of the system mentioned in note 3. Even if
these norms are explicitly computable, since 𝑄𝑘

ℎ is a finite rank operator
and can be represented by a matrix, we are not going to compute an
enclosure for the norm, but just an upper bound 𝐶𝑘, which is enough

for our treatment and more practical to compute.
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In the case of Markov Transfer operators, this sequence is also
related to the convergence of equilibrium of the system, indeed if 𝜇
s invariant for the system and 𝜈 is another probability measure in the
trong space we have that 𝜇 − 𝜈 ∈  0

𝑠 and hence the convergence to
ero in the weak norm of 𝑄𝑘

ℎ(𝜇 − 𝜈) can be estimated by the sequence
𝐶𝑘. Note also that 𝑄𝑘

ℎ(𝜇 − 𝜈) = 𝜇 −𝑄𝑘
ℎ(𝜈).

Remark 3.9. In Theorem 3.4 we have a summability condition on 𝐶𝑘.
We remark that in the statement and in the proof of the theorem we
could exchange the role of 𝐿 and 𝑄ℎ. If we could prove that ∑𝑘

‖

‖

‖

𝐿𝑘
| 0

𝑠

‖

‖

‖

is summable and find an estimate for each term, this would give us an
a-priori bound on the approximation error, but in general this a difficult
task already for simple maps, as one-dimensional piecewise expanding
ones, in the case there is not a Markov partition.

The flexibility of our method lies in the fact that the bound in
Theorem 3.4 uses an a-posteriori, computer-assisted estimate which is
computed on a finite-dimensional operator 𝑄ℎ: in some sense, we ask
the computer to estimate the convergence to equilibrium of the system
at a finite resolution. This task is possible even if the dynamics is quite
complicated. Of course the complexity increases with the resolution,
and to optimize this we have to find a suitable strategy. This is the
theme of next section.

3.1. The approximation error can be made as small as wanted

Our error estimates are a-posteriori ones: one knows the quality of
the approximation only after applying the algorithm. In this section
we give an argument showing that if the spaces satisfy Assumptions
2.1, the discretization scheme satisfies Definition 2.7 and the operator
satisfies 2.4 we can approximate the stationary density as well as
wanted; the argument here mirrors the one in [17] but works under
the more general assumptions of this paper.

Suppose 𝑠 ⊆ 𝑤 are two vector spaces of Borel signed measures
on a certain metric space 𝑋 endowed with two norms, the strong norm
‖ ‖𝑠 on 𝑠 and the weak norm ‖ ‖ on 𝑤, such that ‖ ‖𝑠 ≥ ‖ ‖ as before.
Let 𝛿 ≥ 0. Let 𝐿𝛿 , 𝛿 ∈ [0, 𝛿) be a family of Markov operators acting on

𝑤. Denote by  0
𝑠 ,

0
𝑤 the ‘‘zero average’’ spaces of 𝑠,𝑤.

efinition 3.10. We say that 𝐿 ∶ 𝑠 → 𝑠 has exponential conver-
ence to equilibrium if there are 𝜆 < 0 and 𝐶 ≥ 0 such that for each
≥ 0, 𝑓 ∈  0

𝑠

𝐿𝑛
0𝑓‖ ≤ 𝐶𝑒𝜆𝑛‖𝑓‖𝑠.

heorem 3.11. Let 𝐿0 be an linear operator acting on 𝑠,𝑤, having
xponential convergence to equilibrium, and let 𝐿ℎ = 𝑃ℎ𝐿0𝑃ℎ where 𝑃ℎ is a

compatible discretization. Let ℎ̄ be small and suppose that for all ℎ ∈ [0, ℎ̄)

(1) 𝐿ℎ are Markov operators acting on 𝑤 and 𝑠,
(2) 𝐿ℎ satisfy (5) with constants uniform in ℎ,
(3) 𝐿ℎ satisfy (3) with constant uniform in ℎ.

Then we can apply Theorem 3.4, finding constant 𝐶𝑘 such that when ℎ and
𝜀 are small enough, ‖𝑢 − 𝑢ℎ‖ in (13) is as small as wanted.

Before the proof we need to recall a result which is classical in this
setting, and is proved in [32] in the form we will use.

We say that 𝐿𝛿 is a uniform family of operators if:

UF1 (Uniform Lasota–Yorke ineq.) There are constants 𝐴,𝐵, 𝜆1 ≥ 0
with 𝜆1 < 1 such that ∀𝑓 ∈ 𝐵𝑠,∀𝑛 ≥ 1,∀𝛿 ∈ [0, 1) and each
operator satisfies a Lasota–Yorke inequality.

‖𝐿𝑛
𝛿𝑓‖𝑠 ≤ 𝐴𝜆𝑛1‖𝑓‖𝑠 + 𝐵‖𝑓‖𝑤. (15)

UF2 Suppose that 𝐿𝛿 approximates 𝐿0 when 𝛿 is small in the follow-
ing sense: there is 𝐶 ∈ R such that ∀𝑔 ∈ 𝐵𝑠:
6

‖(𝐿𝛿 − 𝐿0)𝑔‖𝑤 ≤ 𝛿𝐶‖𝑔‖𝑠. (16) w
UF3 Suppose that 𝐿0 has exponential convergence to equilibrium,
with respect to the norms ‖ ‖𝑤 and ‖ ‖𝑠.

UF4 (The weak norm is not expanded) There is 𝑀 such that ∀𝛿, 𝑛, 𝑔 ∈
𝐵𝑠 ‖𝐿𝑛

𝛿𝑔‖𝑤 ≤ 𝑀‖𝑔‖𝑤.

The following result (see [32], Proposition 45 for the proof) shows
that such a uniform family has a uniform rate of contraction of the
space  0

𝑠 and hence a uniform convergence to equilibrium and spectral
gap.

Theorem 3.12 (Uniform  0
𝑠 Contraction for the Uniform Family of Oper-

ators). Let us consider a one parameter family of operators 𝐿𝛿 , 𝛿 ∈ [0, 1).
uppose that they satisfy UF1, . . . UF4, then there are 𝜆1 < 1 and 𝐴2, 𝛿2 ≥ 0
uch that for each 𝛿 ≤ 𝛿2 and 𝑓 ∈ 𝑉𝑠

𝐿𝑘
𝛿𝑓‖𝑠 ≤ 𝐴2𝜆

𝑘
1‖𝑓‖𝑠. (17)

roof of Theorem 3.11. First we see that we can apply Theorem 3.12
o our family of operators 𝐿ℎ. The assumption 𝑈𝐹1 and 𝑈𝐹4 are veri-
ied due to (2) and (3). The assumption 𝑈𝐹2 is provided by Lemma 3.5,
hile 𝑈𝐹3 is supposed in the assumptions of Theorem 3.11. Applying
heorem 3.12 we get that uniformly on ℎ there are 𝜆1 < 0, ℎ2 ≥ 0, 𝐶1 ≥
such that for each ℎ ∈ [0, ℎ2), 𝑛 ≥ 0, 𝑓 ∈ 𝑠,

𝐿𝑛
ℎ𝑓‖𝑠 ≤ 𝐶1𝑒

𝜆1𝑛
‖𝑓‖𝑠.

y (7) we than have that when 𝑓 ∈ 𝑈0
ℎ

𝐿𝑛
ℎ𝑓‖𝑤 ≤ ‖𝐿𝑛

ℎ𝑓‖𝑠 ≤ ℎ−1𝐶1𝑒
𝜆1𝑛𝑀1‖𝑓‖𝑤.

y this we see that a sufficient condition to get 𝐶𝑛 ≤ 1
2 is

𝑛 ≥ 𝜆−1𝑙𝑜𝑔(ℎ−1𝐶1𝑀1)

y Item 1) of Lemma 3.7 this leads to ∑∞
𝑘=0 𝐶𝑘 ≤ 2 𝑊 𝜆−1 log(ℎ−1𝐶1𝑀1)

and then by (13):

‖

‖

𝑢 − 𝑢ℎ‖‖ ≤ (2 𝑊 𝜆−1 log(ℎ−1𝐶1𝑀1))(2𝐾ℎ (1 + ‖𝐿‖) ‖𝑢‖𝑠 + 𝜀). (18)

hich can be set as small as wanted when ℎ and 𝜀 are small
nough. □

. Estimating the convergence to equilibrium with the coarse-fine
trategy

This section presents the coarse-fine approach, i.e., a method to use
ounds 𝐶𝑘 as in (12), estimating the convergence to equilibrium of 𝑄ℎ,
o produce analogous bounds 𝐶𝐹

𝑘 on the convergence to equilibrium
f a finer-resolution approximation 𝑄ℎ𝐹 of 𝐿, with ℎ𝐹 < ℎ. An impor-
ant ingredient will be the Lasota–Yorke inequality, which is shared
y all sufficiently fine compatible discretizations of 𝐿 (as proved in
orollary 2.18).

A statement of this kind will be given in Corollary 4.6. This corol-
ary will be obtained as a consequence of several intermediate steps,
btaining estimates on the norm of 𝑄𝑚

ℎ −𝑄𝑚
ℎ𝐹

.
The first ingredient is an iterated version of the Lasota–Yorke in-

equality for a discretized operator (Corollary 2.18). The approach is
somewhat similar to the one used in [19] to rigorously estimate decay
of correlation.

Theorem 4.1. Let 𝐿 be an operator that satisfies Assumption 2.4, 𝑃ℎ be
a compatible discretization. Then, for each 𝑘 ∈ N we have the inequality

⎡

⎢

⎢

⎣

‖

‖

‖

𝑄𝑘
ℎ𝑓

‖

‖

‖𝑠
‖

‖

‖

𝑄𝑘
ℎ𝑓

‖

‖

‖𝐿1

⎤

⎥

⎥

⎦

≤
([

1 0
𝐸ℎ 1

] [

𝐴 𝐵
0 1

])𝑘 [
‖𝑓‖𝑠
‖𝑓‖𝐿1

]

, 𝑓 ∈ ℎ,
here ≤ is intended to be componentwise.



Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 170 (2023) 113329S. Galatolo et al.

‖

‖

H
[

‖

‖

‖

w



h
a
𝑂
e

s
L
𝑛
r
t
𝑃

T
s
𝑃

‖

‖

‖

w

P
r

m

t
o
c

t

Proof. Note that 𝑃ℎ𝑓 = 𝑓 since 𝑓 ∈ ℎ. We have

𝑄ℎ𝑓‖‖𝐿1 ≤ ‖𝐿𝑓‖𝐿1 + 𝐸ℎ ‖𝐿𝑓‖𝑠 ≤ ‖𝑓‖𝐿1 + 𝐸ℎ ‖𝐿𝑓‖𝑠 .

ence
‖

‖

𝑄ℎ𝑓‖‖𝑠
‖

‖

𝑄ℎ𝑓‖‖𝐿1

]

≤
[

1 0
𝐸ℎ 1

] [

‖𝐿𝑓‖𝑠
‖𝑓‖𝐿1

]

≤
[

1 0
𝐸ℎ 1

] [

𝐴 𝐵
0 1

] [

‖𝑓‖𝑠
‖𝑓‖𝐿1

]

.

The rest follows by induction. □

Corollary 4.2. Let 𝑀 be as in (7). Then,

𝑄𝑘
ℎ𝑓

‖

‖

‖𝑠
≤ 𝑅𝑘,ℎ,1 ‖𝑓‖ ,

‖

‖

‖

𝑄𝑘
ℎ𝑓

‖

‖

‖𝐿1 ≤ 𝑅𝑘,ℎ,2 ‖𝑓‖ , 𝑓 ∈ ℎ, (19)

here
[

𝑅𝑘,ℎ,1

𝑅𝑘,ℎ,2

]

∶=

([

1 0

𝐸ℎ 1

]

[

𝐴 𝐵
0 1

]

)𝑘 [ 1
ℎ𝛼 𝑀

1

]

. (20)

Corollary 4.3. Let 𝑆1, 𝑆2 be constants such that ‖𝑓‖ ≤ 𝑆1 ‖𝑓‖𝑠 +
𝑆2 ‖𝑓‖𝐿1 . Then,
‖

‖

‖

𝑄𝑘
ℎ
‖

‖

‖

≤ 𝑆1𝑅𝑘,ℎ,1 + 𝑆2𝑅𝑘,ℎ,2. (21)

Remark 4.4. If 𝐸 = 0, as in the case of the Ulam projection (Section 6),
these bounds reduce to

Var((𝑄𝑈
ℎ )

𝑘𝑓 ) ≤ 𝐴𝑘 Var(𝑓 ) + (1 + 𝐴 + 𝐴2 +⋯ + 𝐴𝑘−1)𝐵 ‖𝑓‖𝐿1

≤ 𝐴𝑘 Var(𝑓 ) + 𝐵
1 − 𝐴

‖𝑓‖𝐿1 ,

which is a classical iterated form of the Lasota–Yorke inequality [17,
31].

For a general projection, instead, 𝐸 ≠ 0 and the matrix

ℎ =
[

1 0
𝐸ℎ 1

] [

𝐴 𝐵
0 1

]

as an eigenvalue strictly larger than 1, hence 𝑅𝑘,ℎ,1 and 𝑅𝑘,ℎ,2 diverge
nd ‖

‖

‖

𝑄𝑘
ℎ
‖

‖

‖

is not bounded uniformly in 𝑘. Nevertheless, ℎ is an
(ℎ) perturbation of the power-bounded matrix 0 =

[ 𝐴 𝐵
0 1

]

, so these
stimates can be shown to be useful when 𝑘 ≪ 1∕ℎ.

We can now prove a result that shows that discretizations of the
ame operator with different grid sizes are ‘close’ (in a suitable sense).
et us consider two discretizations of the same Perron operator 𝐿, with
and 𝑛𝐹 elements respectively (and grid sizes ℎ = 1∕𝑛, ℎ𝐹 = 1∕𝑛𝐹 )

espectively. Note that if 𝑛𝐹 is a multiple of 𝑛, then for both 𝑃𝑈
ℎ and 𝑃𝐿

ℎ
he finer grid is a refinement of the coarse grid, and 𝑃ℎ𝑃ℎ𝐹 = 𝑃ℎ𝐹 𝑃ℎ =
ℎ.

heorem 4.5. Let 𝑄ℎ, 𝑄ℎ𝐹 be two (𝑖-preserving) discretizations of the
ame Perron operator 𝐿, obtained with projections such that 𝑃ℎ𝑃ℎ𝐹 =
ℎ𝐹 𝑃ℎ = 𝑃ℎ. Then, for each 𝑓 ∈  0

ℎ𝐹
we have

(𝑄𝑚
ℎ −𝑄𝑚

ℎ𝐹
)𝑓‖‖

‖

≤ 2𝐾ℎ
𝑚−1
∑

𝑘=0
𝐶𝑚−1−𝑘

(

‖

‖

‖

𝑄ℎ𝐹
‖

‖

‖

‖

‖

‖

𝑄𝑘
ℎ𝐹

𝑓‖‖
‖𝑠

+ ‖

‖

‖

𝑄𝑘+1
ℎ𝐹

𝑓‖‖
‖𝑠

)

.

here
‖

‖

‖

‖

𝑄𝑘
ℎ| 0

ℎ

‖

‖

‖

‖

≤ 𝐶𝑘.

roof. The key insight is noticing that 𝐿ℎ𝐹 = 𝑃ℎ𝐹 𝑄ℎ𝑃ℎ𝐹 , so we can
egard 𝑄ℎ as a further discretization of the operator 𝑄ℎ𝐹 , rather than a

discretization of 𝐿. In particular, we can apply Lemma 3.5 with 𝑄ℎ𝐹 in
place of 𝐿. The rest follows once again from a telescopic sum argument.

‖

‖

‖

(𝑄𝑚
ℎ −𝑄𝑚

ℎ𝐹
)𝑓‖‖

‖

≤
𝑚−1
∑

𝑘=0

‖

‖

‖

𝑄𝑚−1−𝑘
ℎ (𝑄ℎ −𝑄ℎ𝐹 )𝑄

𝑘
ℎ𝐹

𝑓‖‖
‖

≤
𝑚−1
∑

𝐶𝑚−1−𝑘2𝐾ℎ
(

‖

‖

‖

𝑄ℎ𝐹
‖

‖

‖

‖

‖

‖

𝑄𝑘
ℎ𝐹

𝑓‖‖
‖𝑠

+ ‖

‖

‖

𝑄𝑘+1
ℎ𝐹

𝑓‖‖
‖𝑠

)

. □
7

𝑘=0
Corollary 4.6. We have

‖

‖

‖

‖

𝑄𝑚
ℎ𝐹

| 0
ℎ𝐹

‖

‖

‖

‖

≤ 𝐶𝑚 + 2𝐾ℎ
𝑚−1
∑

𝑘=0
𝐶𝑚−1−𝑘(

‖

‖

‖

𝑄ℎ𝐹
‖

‖

‖

𝑅𝑘,ℎ𝐹 ,1 + 𝑅𝑘+1,ℎ𝐹 ,1). (22)

Proof. From Theorem 4.5 we have that for all 𝑓 ∈  0
ℎ𝐹

‖

‖

‖

𝑄𝑚
ℎ𝐹

𝑓‖‖
‖

≤ ‖

‖

‖

𝑄𝑚
ℎ𝑓

‖

‖

‖

+ ‖

‖

‖

(𝑄𝑚
ℎ −𝑄𝑚

ℎ𝐹
)𝑓‖‖

‖

≤ 𝐶𝑚 ‖𝑓‖ +
𝑚−1
∑

𝑘=0
𝐶𝑚−1−𝑘2𝐾ℎ

(

‖

‖

‖

𝑄ℎ𝐹
‖

‖

‖

‖

‖

‖

𝑄𝑘
ℎ𝐹

𝑓‖‖
‖𝑠

+ ‖

‖

‖

𝑄𝑘+1
ℎ𝐹

𝑓‖‖
‖𝑠

)

Observe that by Corollary 4.2 we have that
‖

‖

‖

𝑄𝑘
ℎ𝐹

𝑓‖‖
‖𝑠

≤ 𝑅𝑘,ℎ𝐹 ,1 ‖𝑓‖ ,

therefore

‖

‖

‖

𝑄𝑚
ℎ𝐹
𝑓‖‖
‖

≤ 𝐶𝑚 ‖𝑓‖ +
𝑚−1
∑

𝑘=0
𝐶𝑚−1−𝑘2𝐾ℎ

(

‖

‖

‖

𝑄ℎ𝐹

‖

‖

‖

𝑅𝑘,ℎ𝐹 ,1 + 𝑅𝑘+1,ℎ𝐹 ,1

)

‖𝑓‖ . □

This estimate requires only the explicit computation of ‖‖
‖

𝑄ℎ𝐹
‖

‖

‖

and
of the norms 𝐶𝑘 computed on a matrix of size 𝑛 < 𝑛𝐹 . Hence its
computational cost is 𝑂(𝑛2 𝑚 + 𝑛𝐹 ), which can be much smaller than
𝑂(𝑛2𝐹 𝑚).

Remark 4.7. When used alone, this process to derive coefficients 𝐶𝐹
𝑚

on a finer grid from coefficients 𝐶𝑚 on a coarser grid never gives a
practical advantage when used in (13). Indeed, ignoring some moderate
factors and summands, we are replacing the estimate

‖

‖

𝑢 − 𝑢ℎ‖‖ ∼ ℎ
∞
∑

𝑘=0
𝐶𝑘

from Theorem 3.4 with

‖

‖

‖

𝑢 − 𝑢ℎ𝐹
‖

‖

‖

∼ ℎ𝐹
∞
∑

𝑚=0
𝐶𝐹
𝑚 ∼ ℎ𝐹

∞
∑

𝑚=0
ℎ
𝑚−1
∑

𝑘=0
𝐶𝑚−1−𝑘

1
ℎ𝐹

𝐴𝑘

= ℎ
∞
∑

𝑚=0

𝑚−1
∑

𝑗=0
𝐶𝑗𝐴

𝑚−1−𝑗 = ℎ
∞
∑

𝑗=0

∞
∑

𝑚=𝑗+1
𝐶𝑗𝐴

𝑚−1−𝑗

= ℎ
1 − 𝐴

∞
∑

𝑗=0
𝐶𝑗 ,

from Theorem 4.5; and this estimate is worse by a factor 1
1−𝐴 . This

rough computation suggests that one is always better off using the
bound in Theorem 3.4 on 𝑄ℎ directly, forgoing 𝑄ℎ𝐹 entirely.

However, another key ingredient is that we have other sources of a
priori bounds on 𝐶𝐹

𝑘 which are more effective for small 𝑘 and improve
this estimate significantly. These different bounds are described in
detail in Section 8.5.

5. Applying the general strategy to the transfer operators of non-
singular maps

The main application of the abstract approximation scheme we
present is the approximation of invariant densities for expanding and
piecewise expanding dynamical systems on the unit interval [0, 1].

Let 𝑇 be a measurable map 𝑇 ∶ [0, 1] → [0, 1], we say 𝑇 is
nonsingular if 𝑚(𝑇 −1(𝐴)) = 0 if and only if 𝑚(𝐴) is equal to 0 for all

easurable subsets 𝐴.
Given a measurable map, the action of the dynamical system ex-

ends to the space of probability measures through the push-forward
perator associated to the map 𝑇 , usually denoted as 𝑇 ∗, which asso-
iates to a probability measure 𝜇 the unique measure 𝑇 ∗𝜇 such that
(𝑇 ∗𝜇)(𝐴) = 𝜇(𝑇 −1𝐴) for all measurable set 𝐴. If 𝑇 is nonsingular,
he space of absolutely continuous measures is preserved by 𝑇 ∗; this

induces an operator 𝐿 ∶ 𝐿1[0, 1] → 𝐿1[0, 1] on the space of densities,

called the Perron–Frobenius operator associated to the dynamical
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∫

system. It is well known that 𝐿 in this case is a weak contraction in
𝐿1; for each 𝑓 ∈ 𝐿1[0, 1],

‖𝐿𝑓‖𝐿1 ≤ ‖𝑓‖𝐿1 .

In the case where the map is piecewise expanding we have that the
associated Perron–Frobenius operator satisfies a Lasota–Yorke inequal-
ity. The following is a classical result, see [33] or [17][Theorem 5.2]
for a proof.

Lemma 5.1 (Var −𝐿1 Lasota–Yorke Inequality). Let 𝑇 ∶ [0, 1] → [0, 1] and
suppose there exists a finite partition {𝑃𝑘}𝑏𝑘=1 of [0, 1] such that

(1) 𝑇𝑘 = 𝑇 |𝑃𝑘 is 𝐶2,
(2) |𝑇 ′(𝑥)| > 2 for all 𝑥 ∈ [0, 1]
(3) the distortion |𝑇 ′′(𝑥)∕𝑇 ′(𝑥)2| is uniformly bounded by a constant 𝐷,

hen (2) is satisfied with

= sup
𝑥

|

|

|

|

2
𝑇 ′(𝑥)

|

|

|

|

𝐵 = sup
𝑘

2
|𝑃𝑘|

+𝐷, (23)

Maintaining hypothesis (1) and (3), relaxing hypothesis (2) to |𝑇 ′(𝑥)| >
for all 𝑥 ∈ [0, 1] and with the addition that for all 𝑘 𝑓 (𝑃𝑘) = [0, 1], then

(2) is satisfied with

𝐴 = sup
𝑥

|

|

|

|

1
𝑇 ′(𝑥)

|

|

|

|

𝐵 = 𝐷. (24)

In this context it is also well known (see e.g. [34]) that the transfer
perator associated to a piecewise expanding map 𝑇 , provided that 𝑇 is
opologically mixing has a unique invariant probability density having
ounded variation.

.1. Recalling the needed constants

In the following we will use the basic facts recalled above for the
pproximation of invariant densities of examples of piecewise expand-
ng maps. We will do this following our general strategy, for different
iscretizations and using different spaces. We recall that to apply our
pproximation strategy we have to provide the following bounds:

• the coefficients 𝐴,𝐵 of a Lasota–Yorke inequality

‖𝐿𝑓‖𝑠 ≤ 𝐴 ‖𝑓‖𝑠 + 𝐵 ‖𝑓‖𝐿1 , 𝐴 < 1,

• the constant of the discretization error 𝐾,
• the ‘‘𝑖-injection’’ constant 𝐸,
• the discretized ‘‘strong-weak’’ constant 𝑀 ,
• the ‘‘weak-strong+auxiliary’’ constants 𝑆1 and 𝑆2,
• a bound on ‖𝐿‖.

In the next sections we will compute all these constants for the Ulam
pproximation and for the piecewise linear approximation studied in
17] showing how the application of the coarse-fine strategy brings a
ubstantial improvement in the computing speed and in the precision.

. The Ulam projection

The first projection that we consider is the so-called Ulam projection
n the torus. Subdivide [0, 1) into 𝑛 intervals 𝐼𝑗 = [(𝑗 − 1)ℎ, 𝑗ℎ), 𝑗 =
,… , 𝑛, with the same width ℎ = 1∕𝑛, and define

𝑃𝑈
ℎ 𝑓 )(𝑥) = 1

ℎ ∫𝐼𝑗
𝑓 (𝑦)𝑑𝑦, if 𝑥 ∈ 𝐼𝑗 , 𝑗 = 1,… , 𝑛.

i.e., 𝑃𝑈
ℎ 𝑓 is the piecewise constant function that is equal on each

interval 𝐼𝑗 to the integral average of 𝑓 on 𝐼𝑗 . Its image ℎ is the
space of piecewise constant functions on this grid. A natural basis for
8

ℎ is the one composed of the characteristic functions of the intervals c
𝐼1, 𝐼2,… , 𝐼𝑛. In this basis, the coordinates of a function 𝑓 ∈ ℎ are
𝑓𝑗 = 𝑓 ((𝑗 − 1)ℎ) for 𝑗 = 1, 2,… , 𝑛, and

‖𝑓‖𝐿1 = 1
𝑛

𝑛
∑

𝑗=1

|

|

𝑓𝑖|| =
1
𝑛

‖

‖

‖

‖

‖

‖

‖

‖

‖

‖

‖

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑓1
𝑓2
⋮

𝑓𝑛

⎤

⎥

⎥

⎥

⎥

⎥

⎦

‖

‖

‖

‖

‖

‖

‖

‖

‖

‖

‖𝓁1

. (25)

Moreover, the matrix associated to 𝐿𝑈
ℎ has elements

(𝐿𝑈
ℎ )𝑖𝑗 =

|

|

|

𝑇 −1(𝐼𝑖) ∩ 𝐼𝑗
|

|

|

|

|

|

𝐼𝑗
|

|

|

. (26)

This discretization admits a simple interpretation, first suggested by
Ulam in [35, pag.73-75]4: (𝐿𝑈

ℎ )𝑖𝑗 is the probability that a random point
in 𝐼𝑗 (under the scaled Lebesgue measure) is mapped by 𝑇 into the
interval 𝐼𝑖. Hence 𝐿𝑈

ℎ is the transition matrix of a Markov chain which
approximates (in a suitable sense) the dynamic of the map 𝑇 .

Remark 6.1. When discretizing the transfer operator of a piecewise
expanding map, the matrix 𝐿𝑈

ℎ we obtain, with elements in (26) is
sparse. Indeed, we can decompose

(𝐿𝑈
ℎ )𝑖𝑗 =

𝑘
∑

𝑖=1

|

|

|

𝑇 −1
𝑘 (𝐼𝑖) ∩ 𝐼𝑗

|

|

|

|

|

|

𝐼𝑗
|

|

|

, (27)

and by Lagrange’s theorem,
|

|

|

𝑇 −1
𝑘 (𝐼𝑖)

|

|

|

≤ ℎ
inf |𝑇 ′

|

< ℎ
2
,

hence 𝐿𝑈
ℎ has at most 2 m nonzero elements in each row.

In this section we will find all the needed constants for the Ulam
projection; in the Ulam case, we use the following norms.

Norms for the Ulam discretization 6.2. The norms involved in the
Ulam approximation scheme are

• the strong seminorm is ‖.‖𝑠 ∶= Var (.),
• the weak norm is ‖.‖ ∶= ‖.‖𝐿1 ,
• 𝑖(𝑓 ) = ∫ 𝑓𝑑𝑚, where 𝑚 is the Lebesgue measure on [0, 1].

he function 𝑖(𝑓 ) is represented in the above basis by the row vector
∗ = 1

𝑛 [1, 1,… , 1].

6.1. Establishing the necessary bounds

In this subsection we estimate the necessary constants for our ap-
proximation procedure. Most of the estimates are trivial or well known,
and are proved for a matter of completeness.

Lemma 6.3. Let 𝑃𝑈
ℎ be the Ulam discretization on 𝑛-elements. Then:

(1) ‖

‖

𝑃ℎ𝑓 − 𝑓‖
‖

≤ ℎ
2 ‖𝑓‖𝑠, therefore 𝐾 = 1∕2,

(2) ‖

‖

𝑃ℎ𝑓‖‖𝐿1 = ‖𝑓‖𝐿1 and ∫𝑋 (𝑓 − 𝑃ℎ𝑓 )𝑑𝑥 = 0, therefore 𝐸 = 0,
(3) if 𝑓ℎ ∈ ℎ we have that ‖

‖

𝑓ℎ‖‖𝑠 ≤ 2‖𝑓ℎ‖ℎ , therefore 𝑀 = 2,
(4) ‖𝑓‖ = ‖𝑓‖𝐿1 therefore 𝑆1 = 0, 𝑆2 = 1.

Proof. We refer to [1] for a proof of (1). Since 𝑃ℎ is a positive operator,
we have that ‖

‖

𝑃ℎ𝑓‖‖𝐿1 ≤ ‖

‖

𝑃ℎ1‖‖𝐿1 = ‖1‖𝐿1 = 1; moreover

1

0
𝑓 − 𝑃ℎ𝑓𝑑𝑥 =

𝑛
∑

𝑖=0
∫𝐼𝑖

(

𝑓 (𝑥) − 1
ℎ ∫𝐼𝑖

𝑓 (𝑦)𝑑𝑦 ⋅ 𝜒𝐼𝑖 (𝑥)

)

𝑑𝑥 = 0,

4 For the interested reader, it can be found at https://archive.org/details/
ollectionofmath0000ulam/page/73

https://archive.org/details/collectionofmath0000ulam/page/73
https://archive.org/details/collectionofmath0000ulam/page/73
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therefore 𝐸 = 0, item (2).
If 𝑓ℎ ∈ ℎ, we have that 𝑓ℎ =

∑𝑛
𝑖=0 𝑓𝑖𝜒𝐼𝑖 and

ar 𝑓ℎ =
𝑛−1
∑

𝑖=0

|

|

𝑓𝑖+1 − 𝑓𝑖|| ≤ 2
𝑚
∑

𝑖=0
|𝑓𝑖| ≤ 2ℎ ‖𝑓‖𝐿1 ,

herefore 𝑀 = 2, item (3).
Item (4) follows from the fact that ‖𝑓‖ = ‖𝑓‖𝐿1 . □

6.2. Spectral picture for 𝐿𝑈
ℎ

Note that the Ulam projection is, by its definition, 𝑖-preserving,
.e., 𝑖(𝑃𝑈

ℎ 𝑓 ) = 𝑖(𝑓 ). In particular, this implies that 𝐿𝑈
ℎ = 𝑄𝑈

ℎ .
We have 𝑖∗𝑄𝑈

ℎ = 𝑖∗, hence 𝑄𝑈
ℎ is a stochastic matrix, which is also

rreducible and a-periodic by the mixing hypothesis. By the Perron–
robenius theorem, its largest eigenvalue is 𝜆1 = 1, and the associated
igenvector 𝑢ℎ has strictly positive entries; moreover, the second largest
igenvalue is 𝜆2 < 1. In particular, 1 = ‖

‖

‖

𝑄𝑈
ℎ
‖

‖

‖𝐿1 = ‖

‖

‖

(𝑄𝑈
ℎ )

𝑘‖
‖

‖𝐿1 for all

∈ N, while
‖

‖

‖

‖

(𝑄𝑈
ℎ )

𝑘
| 0

ℎ

‖

‖

‖

‖

= 𝑂(𝜆𝑘2), where

0
ℎ ∶= {𝑔 ∈ ℎ ∶ 𝑖∗𝑔 = 0}. (28)

7. The piecewise linear projection

In this section we will find all the needed constants for the piecewise
linear projection on [0, 1).

The piecewise linear projection is defined as follows. Divide [0, 1]
into 𝑛 equal intervals, delimited by equispaced nodes {𝑎𝑖 =

𝑖
𝑛 }

𝑛
𝑖=0. Let

𝑖(𝑥) be the piecewise linear function

𝑖(𝑥) =

⎧

⎪

⎨

⎪

⎩

𝑛(𝑥 − 𝑎𝑖−1) 𝑥 ∈ [𝑎𝑖−1, 𝑎𝑖]
−𝑛(𝑥 − 𝑎𝑖) 𝑥 ∈ [𝑎𝑖, 𝑎𝑖+1]

0 𝑥 ∈ [𝑎𝑖−1, 𝑎𝑖+1]𝑐

nd define

𝑃𝐿
ℎ 𝑓 )(𝑥) =

𝑛
∑

𝑖=0
𝑓 (𝑎𝑖)𝜙𝑖(𝑥)

.e., 𝑃𝐿
ℎ 𝑓 is the piecewise linear function that which interpolates 𝑓 (𝑎𝑖)

n the given nodes. The image ℎ of 𝑃𝐿
ℎ is the space of piecewise linear

unctions on this grid. A natural basis for this space is (𝜙𝑖(𝑥))𝑖=1,…,𝑛.
Given a function 𝑓 ∈ ℎ, its coordinates in this basis are 𝑓𝑗 = 𝑓 (𝑎𝑗−1)
for 𝑗 = 1, 2,… , 𝑛, and

𝑓‖𝐿∞ = max
𝑖=1,…,𝑛

|

|

𝑓𝑖|| =

‖

‖

‖

‖

‖

‖

‖

‖

‖

‖

‖

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑓1
𝑓2
⋮

𝑓𝑛

⎤

⎥

⎥

⎥

⎥

⎥

⎦

‖

‖

‖

‖

‖

‖

‖

‖

‖

‖

‖𝓁∞

.

he matrix associated to 𝐿ℎ has elements

𝐿ℎ)𝑖𝑗 =
∑

𝑥∈𝑇−1(𝑎𝑖)

𝜙𝑗 (𝑥)
|𝑇 ′(𝑥)|

. (29)

Norms for the piecewise linear discretization 7.1. The norms
involved in the piecewise linear approximation scheme are

• the strong norm ‖.‖𝑠 ∶= ‖.‖𝐿𝑖𝑝,
• the weak norm ‖.‖ ∶= ‖.‖∞,
• 𝑖(𝑓 ) = ∫ 𝑓𝑑𝑚, where 𝑚 is the Lebesgue measure on [0, 1].

he function 𝑖(𝑓 ) is represented in the above basis by the row vector
∗ = 1 [1, 1,… , 1].
9

𝑛

7.1. Expanding maps and the Lasota–Yorke inequality

In this case we need to prove that the operator 𝐿 preserves a
stronger norm; this is proved in the next theorem.

Theorem 7.2 (Lip−𝐿1 Lasota–Yorke Inequality). Let 𝑇 be in 𝐶2(𝑆1), with
|𝑇 ′(𝑥)| > 1 and |𝑇 ′′∕(𝑇 ′)2| < 𝐷. Then, an inequality (2) holds with

𝐴 = sup
𝑥

(2𝐷 + 1)
|𝑇 ′(𝑥)|

𝐵 = 𝐷(𝐷 + 1)

roof. Since 𝑇 ∈ 𝐶2(𝑆1), |𝑇 ′(𝑥)| > 1 there exists (at least) one fixed
oint of 𝑇 ; we can label this fixed point as 0 and see 𝑇 as a map
atisfying (24); in specific, there exists a partition {𝑃𝑘}𝑏𝑘=1 such that
𝑇 (𝑃𝑘) = [0, 1] for all 𝑘; we denote by 𝑇𝑘 ∶= 𝑇 |𝑃𝑘 . Please remark that 𝜆
nd 𝐷 are defined in the proof of (24).

𝐿𝑓 (𝑥) − 𝐿𝑓 (𝑦)| =
|

|

|

|

∑

𝑘

𝑓 (𝑇 −1
𝑘 𝑥)

𝑇 ′
𝑘(𝑇

−1
𝑘 𝑥)

−
𝑓 (𝑇 −1

𝑘 𝑦)

𝑇 ′
𝑘(𝑇

−1
𝑘 𝑦)

|

|

|

|

≤
|

|

|

|

∑

𝑘

𝑓 (𝑇 −1
𝑘 𝑥) − 𝑓 (𝑇 −1

𝑘 𝑦)

𝑇 ′
𝑘(𝑇

−1
𝑘 𝑥)

|

|

|

|

+
|

|

|

|

∑

𝑘

𝑓 (𝑇 −1
𝑘 𝑦)

𝑇 ′
𝑘(𝑇

−1
𝑘 𝑦)

−
𝑓 (𝑇 −1

𝑘 𝑦)

𝑇 ′
𝑘(𝑇

−1
𝑘 𝑥)

|

|

|

|

≤ Lip(f)𝜆|𝑥 − 𝑦|
∑

𝑘

1
𝑇 ′
𝑘(𝑇

−1
𝑘 𝑥)

+
|

|

|

|

∑

𝑘

𝑓 (𝑇 −1
𝑘 𝑦)

𝑇 ′
𝑘(𝑇

−1
𝑘 𝑦)

(

1 −
𝑇 ′
𝑘(𝑇

−1
𝑘 𝑦)

𝑇 ′
𝑘(𝑇

−1
𝑘 𝑥)

)

|

|

|

|

.

and

|

|

|

|

1 −
𝑇 ′
𝑘(𝑇

−1
𝑘 𝑦)

𝑇 ′
𝑘(𝑇

−1
𝑘 𝑥)

|

|

|

|

=
|

|

|

|

𝑇 ′
𝑘(𝑇

−1
𝑘 𝑥) − 𝑇 ′

𝑘(𝑇
−1
𝑘 𝑦)

𝑇 ′
𝑘(𝑇

−1
𝑘 𝑥)

|

|

|

|

≤ 𝜆Lip(𝑇 ′
𝑘)|𝑇

−1
𝑘 𝑥 − 𝑇 −1

𝑘 𝑦| ≤ 𝜆2Lip(𝑇 ′
𝑘)|𝑥 − 𝑦|.

ence

Lip(𝐿𝑓 ) ≤ 𝜆 ‖𝐿1‖∞ Lip(𝑓 ) +𝐷 ‖𝐿𝑓‖∞ . (30)

ow we use (24) to estimate

𝐿𝑓‖∞ ≤ Var(𝐿𝑓 ) + ‖𝐿𝑓‖𝐿1 ≤ 𝜆Var(𝑓 ) +𝐷 ‖𝑓‖𝐿1

+ ‖𝑓‖𝐿1 ≤ 𝜆Lip(𝑓 ) + (𝐷 + 1) ‖𝑓‖𝐿1 ,

and, in particular, for the constant function 1, ‖𝐿1‖∞ ≤ 𝐷+1. Plugging
hese two bounds into (30) we get the thesis. □

emark 7.3. Under the same hypotheses, the matrix 𝐿ℎ with elements
n (29) is sparse. Indeed, for each 𝑥 ∈ [0, 1) at most two of the functions
𝑗 (𝑥) are nonzero, hence 𝐿ℎ has at most 2 m nonzero elements in each
ow.

emark 7.4. We need (2𝐷 + 1)𝜆 < 1 for this to be a valid Lasota–
Yorke inequality. If this property does not hold, then we can replace 𝑇
with one of its iterates 𝑇 𝑘. Clearly 𝑇 𝑘 has the same invariant measure
as 𝑇 ; moreover, the values of 𝜆 and 𝐷 are replaced by 𝜆𝑘 and 𝐷(1 +
𝜆 + ⋯ + 𝜆𝑘−1) < 𝐷

1−𝜆 . In particular, for sufficiently large 𝑘 one has
𝜆𝑘(2 𝐷

1−𝜆 + 1) < 1, hence this strategy works. Note, though, that 𝑇 𝑘 has
𝑘𝑏 monotonic branches instead of 𝑏, hence the associated matrix is less
sparse and the whole method is more computationally expensive.

7.2. Establishing the necessary bounds

Lemma 7.5. Let 𝑃𝐿
ℎ be the piecewise linear discretization on 𝑛-elements.

hen:

(1) ‖

‖

𝑃ℎ𝑓 − 𝑓‖
‖

≤ ℎ
2 ‖𝑓‖𝑠, therefore 𝐾 = 1∕2,

(2) ‖

‖

𝑃ℎ𝑓 − 1 ⋅ ∫𝑋 (𝑓 − 𝑃ℎ𝑓 )𝑑𝑥‖‖𝐿1 ≤ ‖𝑓‖𝐿1 + Lip(𝑓 )ℎ∕2, therefore 𝐸 =
1∕2,

(3) if 𝑓ℎ ∈ ℎ we have that ‖
‖

𝑓ℎ‖‖𝑠 ≤ 2 ‖𝑓‖
ℎ , therefore 𝑀 = 2,

(4) ‖𝑓‖ ≤ ‖𝑓‖𝐿1 + ‖𝑓‖𝑠 therefore 𝑆1 = 1, 𝑆2 = 1,

(5) ‖𝐿‖ ≤ 𝐷 + 1.
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Proof. To prove item (1) we study 𝑓 |[𝑎𝑖 ,𝑎𝑖+1] and suppose that 𝑓 (𝑎𝑖) =
, 𝑓 (𝑎𝑖+1) = 0; in this case, ‖𝑓 |[𝑎𝑖 ,𝑎𝑖+1]‖∞ ≤ Lip(𝑓 ) ⋅ (𝑥 − 𝑎𝑖) and
𝑓 |[𝑎𝑖 ,𝑎𝑖+1]‖∞ ≤ Lip(𝑓 ) ⋅ (𝑎𝑖+1 − 𝑥). This means that the graph of |𝑓 (𝑥)|
ies under the graphs of the linear functions 𝑦1(𝑥) = Lip(𝑓 ) ⋅ (𝑎𝑖+1 − 𝑥)
nd 𝑦2(𝑥) = Lip(𝑓 ) ⋅ (𝑥 − 𝑎𝑖) which intersect in (𝑎𝑖+1 − 𝑎𝑖)∕2, therefore

𝑓 |[𝑎𝑖 ,𝑎𝑖+1]
‖

‖

‖𝐿∞ ≤ Lip(𝑓 )ℎ
2

and, since it is true for all 𝑖 we have

𝑓 − 𝑃𝐿
ℎ 𝑓‖‖

‖𝐿∞ ≤ Lip(𝑓 )ℎ
2
.

This implies that

∫

1

0
𝑓 − 𝑃𝐿

ℎ 𝑓𝑑𝑥
|

|

|

|

|

≤ ∫

1

0
|𝑓 − 𝑃𝐿

ℎ 𝑓 |𝑑𝑥 ≤ Lip(𝑓 )ℎ
2
.

From this follows
‖

‖

‖

‖

𝑃ℎ𝑓 − 1 ⋅ ∫𝑋
(𝑓 − 𝑃ℎ𝑓 )𝑑𝑥

‖

‖

‖

‖𝐿1
≤ ‖

‖

𝑃ℎ𝑓‖‖𝐿1 +
‖

‖

‖

‖

1 ⋅ ∫𝑋
(𝑓 − 𝑃ℎ𝑓 )𝑑𝑥

‖

‖

‖

‖𝐿1

≤ ‖𝑓‖𝐿1 + Lip(𝑓 )ℎ
2
.

nd that

𝑃𝐿
ℎ 𝑓‖‖

‖𝐿1 = ∫

1

0
|𝑃𝐿

ℎ 𝑓 (𝑥)| − |𝑓 (𝑥)| + |𝑓 (𝑥)|𝑑𝑥

≤ ∫

1

0
|𝑓 (𝑥)| + ‖𝑃𝐿

ℎ 𝑓 (𝑥)| − |𝑓 (𝑥)‖𝑑𝑥

≤ ‖𝑓‖𝐿1 + ∫

1

0
|𝑃𝐿

ℎ 𝑓 (𝑥) − 𝑓 (𝑥)|𝑑𝑥 ≤ ‖𝑓‖𝐿1 + Lip(𝑓 )ℎ
2
,

therefore 𝐸 = 1∕2.
We prove now Item (3). If 𝑓ℎ ∈ ℎ we have that 𝑓ℎ(𝑥) =

∑𝑛
𝑖=0 𝑎𝑖 ⋅

𝜙𝑖(𝑥), where the 𝜙(𝑥) are piecewise linear. Therefore

ip(𝑓 ) = max
𝑖

|𝑎𝑖+1 − 𝑎𝑖|
ℎ

≤ 2
max𝑖 |𝑎𝑖|

ℎ
= 2

‖𝑓‖
ℎ

Item (4) follows from the fact that for 𝑥 ≠ 𝑥̃

|𝑓 (𝑥̃)| = |𝑓 (𝑥) +
𝑓 (𝑥̃) − 𝑓 (𝑥)

𝑥̃ − 𝑥
(𝑥̃ − 𝑥)| ≤ |𝑓 (𝑥)| + Lip(𝑓 ) ⋅ |𝑥 − 𝑥̃|.

Suppose now that |𝑓 | attains its maximum in 𝑥̃, and integrate:

∫

1

0
‖𝑓‖∞𝑑𝑥 ≤ ∫

1

0
|𝑓 (𝑥)| + Lip(𝑓 ) ⋅ |𝑥 − 𝑥̃|𝑑𝑥 ≤ ‖𝑓‖𝐿1 + Lip(𝑓 ).

Item (5) follows from the fact that ‖𝐿‖𝐿∞ = ‖𝐿1‖𝐿∞ , since 𝐿 is a posi-
tive operator, and ‖𝐿1‖𝐿∞ ≤ 𝐷+1 as in the proof of Theorem 7.2. □

7.3. Spectral picture for 𝐿𝐿
ℎ and 𝑄𝐿

ℎ

Compared with the Ulam projection, the spectral picture is more
blurry for 𝐿𝐿

ℎ and 𝑄𝐿
ℎ . The matrix 𝐿𝐿

ℎ is still a non-negative matrix,
but since 𝑃𝐿

ℎ is not 𝑖-preserving its first eigenvector 𝜆1 is not in general
equal to 1.

The row vector 𝑖∗ is a left eigenvector of 𝑄𝐿
ℎ with eigenvalue equal

to 1, however, 𝑄𝐿
ℎ is not a non-negative matrix, so we do not have all

the results implied by the Perron–Frobenius theory of Markov chains; in
particular, ‖‖

‖

𝑄𝐿
ℎ
‖

‖

‖𝐿1 > 1 in general (and our experimental results suggest
that even the limit limℎ→0

‖

‖

‖

𝑄𝐿
ℎ
‖

‖

‖𝐿1 = 1 does not hold).

Nevertheless, the results by Keller and Liverani (see Corollary 2.19)
ensure that 𝜆2 is smaller than 1 for sufficiently small values of ℎ.

8. Practical computation

In this section we present the results that permit us to efficiently
compute the objects and the constants involved in our treatment. There
are three main points in the algorithm:

• Computing an interval matrix 𝐋 ∋ 𝐿ℎ that encloses 𝐿ℎ;
• Computing a fixed point vector for 𝐋;
10
• Computing norm estimates 𝐶𝑘 ≥
‖

‖

‖

‖

𝑄𝑘
ℎ| 0

ℎ

‖

‖

‖

‖

for 𝑘 = 0, 1, 2,… , 𝑚,
and reaching a 𝑚 such that 𝐶𝑚 < 1.

We will address them one by one in the next sections.

8.1. Assembling the sparse matrices

Recall that the projection 𝑃ℎ permits us to build a discretization of
𝐿, the projected operator 𝐿ℎ ∶= 𝑃ℎ𝐿𝑃ℎ.

Then, 𝐿ℎ ∶ ℎ → ℎ can be represented by a square matrix in a
suitable basis of ℎ.

We describe here a strategy to compute the matrix associated to
𝐿ℎ for the case of the Ulam and piecewise linear projections on the
torus [0, 1). With some abuse of notation, we will denote with the same
symbol both the operator (acting on functions on [0, 1]) and the matrix
that represents it. We assume that the dynamic 𝑇 is composed of 𝑏
continuous and monotonic branches 𝑇1, 𝑇2,… , 𝑇𝑏, whose domains form
a partition of [0, 1).

The partition underlying the projection (which is typically equis-
paced) can be described by an increasing sequence  ∶ 0 = 𝑦0 < 𝑦1 <
𝑦2 < ⋯ < 𝑦𝑛−1 < 𝑦𝑛 = 1 that partitions [0, 1) of 𝑇 into ⋃𝑛

𝑗=𝑖 𝐼𝑗 , with
𝐼𝑗 = [𝑦𝑗−1, 𝑦𝑗 ). We assume that the co-domain [0, 1) of 𝑇 ∶ [0, 1) → [0, 1)
is partitioned according to this sequence  ; then, its domain [0, 1) is
ecomposed into 𝑛𝑏 intervals 𝑇 −1

𝑘 (𝐼𝑗 ), some of them possibly empty;
heir endpoints are an increasing sequence  ∶ 0 = 𝑥0 < 𝑥1 < ⋯ <
𝑁 = 1 that defines a partition of the domain [0, 1) of 𝑇 . We say that
his sequence  is the pull-back of the sequence  , and we denote it by
= 𝑇 −1(). An example is shown in Fig. 1. The endpoints 𝑥𝑖 are either

reimages 𝑇 −1
𝑘 (𝑦𝑗 ) for some 𝑘 and 𝑗, or endpoints of the domain of each

branch; clearly we have 𝑁 ≤ 𝑛𝑏, but some intervals may be missing if
the map is not full-branch; for instance, in the example in Fig. 1 the
interval 𝑇 −1(𝐼1) is empty, and hence there are 7 intervals instead of
8 = 4 ⋅ 2 in the partition  .

Interval arithmetic methods such as the interval Newton method
[36] can be used to compute tight inclusion intervals 𝐱𝑖 for each
element 𝑥𝑖 of the pull-back partition, given explicit formulas to compute
each branch of the map 𝑇𝑘. Once the 𝐱𝑖 are available, inclusions 𝐋𝑖𝑗 for
the matrix elements in either (26) or (29) are easy to compute.

The computation of the 𝐱𝑖 can be performed automatically; we
sketch how the method works for the second branch 𝑇2 of the dynamic
in Fig. 1. One starts from the endpoints (𝑎, 𝑏) of dom(𝑇2). By checking
how 𝑇2(𝑎), 𝑇2(𝑏) compare with the elements of the sequence  , one
can determine that 𝐱3 = 𝑎, 𝐱7 = 𝑏, and that three unknown values
𝑥4 = 𝑇 −1

2 (𝑦1), 𝑥5 = 𝑇 −1
2 (𝑦2), 𝑥6 = 𝑇 −1

2 (𝑦3) need to be computed. We can
use a bisection strategy to reduce the number of iterations needed in the
interval Newton method, as follows. We first compute 𝐱5 by applying
the interval Newton method to find a zero of 𝑥 ↦ 𝑇2(𝑥) − 𝑦2, using
the whole domain hull(𝐱3, 𝐱7) as a starting interval. Once 𝐱5 has been
computed, we obtain 𝐱4 by applying the interval Newton method to find
a zero of 𝑥 ↦ 𝑇2(𝑥)−𝑦1 using the tighter interval hull(𝐱3, 𝐱5) as a starting
point instead of the whole domain, and similarly we use hull(𝐱5, 𝐱7) as
a starting interval in the interval Newton method to compute 𝐱6.

Remark 8.1. Since each branch of 𝑇 is expanding, the preimage
problem is well-conditioned, and we expect to be able to compute
enclosures with radius rad(𝐱𝑖) of the same order of magnitude as the
machine precision used.

Remark 8.2. This description in terms of pull-backs of partitions has
the additional benefit that pull-backs of composed maps are particularly
easy to compute, since (𝑆◦𝑇 )−1() = 𝑇 −1(𝑆−1)().

An explicit algorithm to compute a sparse interval matrix 𝐋 ∋ 𝐿ℎ is
sketched in Algorithm 1. It has complexity 𝑂(𝑛𝑏), since the sets 𝑆𝓁 have
dimension 𝑂(1). The algorithm returns the sparse matrix in coordinate
list format, i.e., a list  of triples (𝑖, 𝑗, 𝐜) such that 𝐋𝑖𝑗 =

∑

(𝑖,𝑗,𝐜)∈ 𝐜. Note
that the list  will in general contain multiple entries with the same 𝑖
and 𝑗.
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Fig. 1. An example of ‘‘pull-back’’: the pull-back along the map 𝑇 (drawn in blue) of the sequence (𝑦𝑗 ) on the 𝑦-axis is the sequence (𝑥𝑖) on the 𝑥-axis.
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Algorithm 1 Assembling a sparse interval matrix 𝐋 ∋ 𝐿ℎ (for the Ulam
or piecewise linear discretization)
1: function assemble_Lh(𝑇 , 𝑛)
equire: 𝑇 , partition  (typically an equispaced one)
nsure: A list  of triples (𝑖, 𝑗, 𝐜)
2: compute enclosures (𝐱𝓁)𝑁𝓁=1 for the pull-back  = 𝑇 −1(),
3: for 𝓁 = 1, 2,… , 𝑁 do
4: determine the set 𝑆𝓁 = {𝑗 ∶ (𝐱𝓁−1, 𝐱𝓁) ∩ 𝐼𝑗 ≠ ∅} or 𝑆𝓁 = {𝑗 ∶

𝜙𝑗 (𝐱𝓁) ≠ 0} via a binary search on  ;
5: for all 𝑗 ∈ 𝑆𝓁 do
6: push (𝑖, 𝑗, 𝐜) into , where 𝐜 is a summand of (27) or (29),
7: and 𝑖 is the index such that 𝑇 ((𝑥𝓁−1, 𝑥𝓁)) ⊆ (𝑦𝑖−1, 𝑦𝑖);
8: end for
9: end for

10: end function

8.2. Numerically approximating the fixed point

We compute numerically an approximate fixed point 𝑢̃ℎ of the
operator 𝑄ℎ by using the restarted Arnoldi method [37, Section 10.5]
o return its eigenvector with eigenvalue (approximately) 1. While 𝐿ℎ

is a sparse matrix, 𝑄ℎ is not, in general. However, we can compute its
(approximate) action on a vector 𝑣 using

𝑄ℎ𝑣 ≈ mid(𝐋)𝑣 + 𝑒𝑖∗(𝑣 − mid(𝐋)𝑣).

For the Ulam discretization, 𝑄ℎ = 𝐿ℎ and we can drop the second
summand.

In general, the computed eigenvector will not satisfy the equality
𝑖∗𝑢̃ℎ = 1 exactly. The following corollary of Theorem 3.4 allows us
to estimate the distance between the computed 𝑢̃ℎ and the exact fixed
point of the operator.
11
Corollary 8.3. Under the hypothesis of Theorem 3.4 and Lemma 3.7, let
𝑢̃ℎ be a vector such that ‖

‖

𝑄ℎ𝑢̃ℎ − 𝑢̃ℎ‖‖ ≤ 𝜀1 and |𝑖∗𝑢̃ℎ − 1| ≤ 𝜀2 < 1. Then,

‖

‖

𝑢 − 𝑢̃ℎ‖‖ ≤
𝐶0 + 𝐶1 +⋯ + 𝐶𝑚−1

1 − 𝐶𝑚
(2𝐾ℎ (1 + ‖𝐿‖) ‖𝑢‖𝑠 +

𝜀1
1 − 𝜀2

)

+
𝜀2

1 − 𝜀2
‖

‖

𝑢̃ℎ‖‖ .

Proof. Set 𝑢ℎ = 𝑢̃ℎ∕𝑖∗𝑢̃ℎ. Then,

‖

‖

𝑄ℎ𝑢ℎ − 𝑢ℎ‖‖ =
‖

‖

𝑄ℎ𝑢̃ℎ − 𝑢̃ℎ‖‖
𝑖∗𝑢̃ℎ

≤
𝜀1

1 − 𝜀2
,

‖

‖

𝑢ℎ − 𝑢̃ℎ‖‖ ≤
‖

‖

‖

‖

1 − 𝑖∗𝑢̃ℎ
𝑖∗𝑢̃ℎ

𝑢̃ℎ
‖

‖

‖

‖

≤
𝜀2

1 − 𝜀2
‖

‖

𝑢̃ℎ‖‖ .

Combining these two bounds with (13) and the first point of Lemma 3.7
gives the desired result. □

8.3. Bounding norms of powers computationally

In this section, we describe a computational procedure to obtain
rigorous bounds of the form

‖

‖

‖

‖

𝑄𝑘
ℎ| 0

ℎ

‖

‖

‖

‖

≤ 𝐶𝑘 in practice on a computer.
e start by recalling one important notation convention we stated in
otation 1.1

otation 8.4. The symbol ‖𝑓‖𝐿𝑝 denotes the 𝐿𝑝 norm of a function
usually defined on [0, 1]), whereas the symbol ‖𝑣‖𝓁𝑝 denotes the 𝓁𝑝

orm of a vector 𝑣 ∈ R𝑛.

In the Ulam projection, since the ‘continuous’ norms ‖⋅‖𝐿1 and the
‘discrete’ norm ‖⋅‖𝓁1 differ only by a constant (see (25)), we have
‖

‖

‖

‖

𝑄𝑘
ℎ| 0

ℎ

‖

‖

‖

‖𝐿1
=
‖

‖

‖

‖

𝑄𝑘
ℎ| 0

ℎ

‖

‖

‖

‖𝓁1
, and similarly for 𝐿∞ and 𝓁∞ in the piecewise

linear projection. Hence we can replace these norms with matrix norms
for which there are classical formulas

‖𝑀‖𝓁1 = max
𝑖

∑

|

|

|

𝑀𝑖𝑗
|

|

|

, ‖𝑀‖𝓁∞ = max
𝑗

∑

|

|

|

𝑀𝑖𝑗
|

|

|

. (31)

𝑗 𝑖
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However, even after reducing to a discrete setting, computing matrix
norms restricted to a certain subspace  0

ℎ is not a textbook problem.
he following bound allows one to solve it.

emma 8.5. Let

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 1 ⋯ 1
−1 0 ⋯ 0
0 −1 ⋱ ⋮
⋮ ⋱ ⋱ 0
0 ⋯ 0 −1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=
[

𝑒∗

−𝐼

]

∈ R𝑛×(𝑛−1),

nd  0
ℎ = ker([1, 1,… , 1]∗) = Im𝑈 . Then, for each 𝑀 ∈ R𝑛×𝑛 and each

𝑝 norm one has
‖

‖

‖

‖

𝑀| 0
ℎ

‖

‖

‖

‖

≤ ‖𝑀𝑈‖.

roof. We have for each 𝑧 ∈ R𝑛−1

𝑈𝑧‖ =

‖

‖

‖

‖

‖

‖

‖

‖

‖

‖

‖

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑧1 + 𝑧2 +⋯ + 𝑧𝑛−1
−𝑧1
−𝑧2
⋮

−𝑧𝑛−1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

‖

‖

‖

‖

‖

‖

‖

‖

‖

‖

‖

≥ ‖𝑧‖ .

oreover,

𝑀| 0
ℎ

‖

‖

‖

‖

= sup
𝑥∈ 0

ℎ ⧵{0}

‖𝑀𝑥‖
‖𝑥‖

= sup
𝑧∈R𝑛−1⧵{0}

‖𝑀𝑈𝑧‖
‖𝑈𝑧‖

≤ sup
𝑧∈R𝑛−1⧵{0}

‖𝑀𝑈𝑧‖
‖𝑧‖

= ‖𝑀𝑈‖ . □

emark 8.6. Note that ‖𝑈𝑧‖𝓁1 ≤ 2 ‖𝑧‖𝓁1 and ‖𝑈𝑧‖𝓁∞ ≤ (𝑛− 1) ‖𝑧‖𝓁∞ ,
so this bound is off by at most a factor 2 in the 𝓁1 norm and by at most
a factor 𝑛 − 1 in the 𝓁∞ norm.

Remark 8.7. For a generic projection, an analogous procedure can
be devised. Let 𝑈 ∈ R𝑛×(𝑛−1) be a matrix whose columns are a basis
of  0

ℎ = ker 𝑖∗, and suppose that ‖𝑈𝑧‖ ≥ 𝛼‖𝑧‖. Then, by the same
reasoning, we have that
‖

‖

‖

‖

𝑀| 0
ℎ

‖

‖

‖

‖

= sup
𝑥∈ 0

ℎ ⧵{0}

‖𝑀𝑥‖
‖𝑥‖

= sup
𝑧∈R𝑛−1⧵{0}

‖𝑀𝑈𝑧‖
‖𝑈𝑧‖

≤ sup
𝑧∈R𝑛−1⧵{0}

‖𝑀𝑈𝑧‖
𝛼 ‖𝑧‖

= 1
𝛼
‖𝑀𝑈‖ .

An estimate for 𝛼 can be obtained automatically for any norm ‖.‖
for which we know explicit constants 𝑐, 𝐶 such that

𝑐‖𝑧‖𝓁2 ≤ ‖𝑧‖ ≤ 𝐶‖𝑧‖𝓁2 ,

using a rigorous estimate for

𝜎min = min(‖𝑈𝑣‖𝓁2∕‖𝑣‖𝓁2 )

btained from the SVD decomposition of 𝑈 , using techniques to rigor-
usly certify eigenvalues as in [38].

Therefore

𝑈𝑧‖ ≥ 𝑐‖𝑈𝑧‖𝓁2 ≥ 𝑐𝜂‖𝑧‖𝓁2 ≥ 𝑐𝜎min𝐶‖𝑧‖.

Remark 8.8. In the case of a more general weak norm ‖⋅‖, we can
reduce the problem to the computation of the 𝓁1 and 𝓁∞ norms of the
operator. To do so, we need three estimates

‖𝑣‖ ≤ 𝑊1 ‖𝑣‖𝓁1 +𝑊2 ‖𝑣‖𝓁∞

and

‖𝑣‖𝓁1 ≤ 𝛼1 ‖𝑣‖ , ‖𝑣‖𝓁∞ ≤ 𝛼∞ ‖𝑣‖ ,

which imply

‖𝑃‖ ≤
𝑊1

‖𝑃‖𝓁1 +
𝑊2

‖𝑃‖𝓁∞ .
12

𝛼1 𝛼2
Remark 8.9. There is some linear algebra literature on fast estimation
of matrix norms, for instance [39], but unfortunately we cannot use it
here. Indeed, these estimators return only a guaranteed lower bound
𝐶 ≤ ‖𝑀‖. Providing a lower bound is a simpler problem, since it is
sufficient to show that ‖𝑀𝑥‖ ≥ 𝐶 for a suitable norm-1 vector 𝑥; giving
a rigorous upper bound, instead, requires proving that ‖𝑀𝑥‖ ≤ 𝐶 for
all norm-1 vectors.

8.4. Handling machine arithmetic errors when bounding norms

In principle, one can obtain a rigorous estimate for
‖

‖

‖

‖

𝑄ℎ| 0
ℎ

‖

‖

‖

‖

from
the results in the previous section by computing ‖𝐋𝑈‖ using interval
arithmetic; however, matrix–vector products in interval arithmetic may
be slow (as was the case for our computational environment), so we
describe here an alternative procedure in which the matrix–vector
products are computed using floating-point arithmetic: we replace 𝐿ℎ
with the floating-point matrix 𝑀 = mid(𝐋), and keep track of the error
directly, in a sort of normwise ball arithmetic, bounding the error with
𝛿 = ‖rad(𝐋)‖. We work out the required bounds in this section, for both
the 𝓁1 norm (used in the Ulam projection) and the 𝓁∞ norm (used in the
piecewise linear projection). We first need to bound the computational
error produced by products with 𝑀 .

Lemma 8.10. Given 𝑀 ∈ R𝑛×𝑛 and 𝑣 ∈ R𝑛, let 𝑤̃ = 𝖿 𝗅(𝑀𝑣) be the vector
obtained by evaluating the product 𝑤 = 𝑀𝑣 in an inexact floating-point
arithmetic system with machine precision 𝗎. Then, for both norms ‖⋅‖𝓁1 and
‖⋅‖𝓁∞ , it holds that

‖𝑤̃ −𝑤‖ ≤ 𝛾𝑧 ‖𝑀‖ ‖𝑣‖ ,

where 𝛾𝑧 ∶= 𝑧𝗎
1−𝑧𝗎 , and 𝑧 is the maximum number of nonzero entries in a

row of 𝑀 .

Proof. This result follows from [40, Section 3.5], after noting that for
a sparse matrix we can replace 𝛾𝑛 with 𝛾𝑧, since each sum has at most
𝑧 terms (as already argued in [17]). □

The main results used to bound the total error are the following. The
simplest case is that of an 𝑖-preserving projection, for which 𝑄ℎ = 𝐿ℎ.

Lemma 8.11. Let 𝑣̃0 = 𝑣0 ∈ R𝑛 be a given fixed vector, and let
𝑀 ∈ R𝑛×𝑛 be a matrix such that ‖

‖

𝐿ℎ −𝑀‖

‖

≤ 𝛿. For each 𝑘 = 1, 2,… ,
let 𝑣̃𝑘+1 ∶= 𝖿 𝗅(𝑀𝑣̃𝑘) be the vector obtained by evaluating the product 𝑀𝑣𝑘
in floating-point arithmetic, and let the sequence 𝜖𝑘 be defined recursively
as

𝜖0 = 0, 𝜖𝑘+1 = 𝛾𝑧 ‖𝑀‖

‖

‖

𝑣̃𝑘‖‖ + 𝛿 ‖
‖

𝑣̃𝑘‖‖ + ‖

‖

𝐿ℎ
‖

‖

𝜖𝑘. (32)

Then,
‖

‖

‖

𝑣̃𝑘 − (𝐿ℎ)𝑘𝑣0
‖

‖

‖𝓁1
≤ 𝜖𝑘, 𝑘 = 0, 1, 2,… .

Proof. Arguing by induction, we have
‖

‖

‖

𝑣̃𝑘+1 − 𝐿𝑘+1
ℎ 𝑣0

‖

‖

‖

≤ ‖

‖

𝑣̃𝑘+1 −𝑀𝑣̃𝑘‖‖ + ‖

‖

𝑀𝑣̃𝑘 − 𝐿ℎ𝑣̃𝑘‖‖ +
‖

‖

‖

𝐿ℎ(𝑣̃𝑘 − 𝐿𝑘
ℎ𝑣0)

‖

‖

‖

≤ 𝛾𝑧 ‖𝑀‖

‖

‖

𝑣̃𝑘‖‖ + 𝛿 ‖
‖

𝑣̃𝑘‖‖ + ‖

‖

𝐿ℎ
‖

‖

𝜖𝑘. □

Note that for the Ulam projection ‖

‖

‖

𝐿𝑈
ℎ
‖

‖

‖𝓁1
= 1, so we can remove

that factor.
If the projection is not 𝑖-preserving, the corresponding estimate for

𝑄ℎ is slightly more involved, because we have to keep track of the
second summand in 𝑄ℎ = 𝐿ℎ + 𝑒𝑖∗(𝐼 −𝐿ℎ). Let us introduce the matrix
𝑁 = 𝐼 − 𝑒𝑖∗, so that

𝑄ℎ𝑣 = 𝑁𝐿ℎ𝑣 + 𝑒𝑖∗𝑣,

and the second summand vanishes if 𝑣 ∈  0
ℎ . This suggests that we can

approximate the action of 𝑄 with that of 𝑁𝐿 .
ℎ ℎ
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Fig. 2. Comparison of the norm bounds obtained from various sources for the Ulam (left) and piecewise linear (right) discretization of 𝑇 (𝑥) = 4𝑥 + 0.01 sin(8𝜋𝑥) mod 1 with
𝑛 = 1024; they are obtained with 𝑘max = 10 computational norm bounds and do not rely on coarser grids.
Fig. 3. Comparison of the norm bounds obtained from various sources for the Ulam (left) and piecewise linear (right) discretization of 𝑇 (𝑥) = 4𝑥 + 0.01 sin(8𝜋𝑥) mod 1 with
𝑛𝐹 = 65536; they are obtained from 𝑘max = 10 computational norm bounds on the coarse grid with 𝑛 = 1024.
‖

‖

‖

s

A
r

R

Lemma 8.12. Let 𝑣̃0 = 𝑣0 ∈  0
ℎ be a given fixed vector, and let

𝑀 ∈ R𝑛×𝑛 be a matrix such that ‖

‖

𝐿ℎ −𝑀‖

‖

≤ 𝛿. For each 𝑘 = 1, 2,… ,
let 𝑤̃𝑘+1 = 𝖿 𝗅(𝑀𝑣̃𝑘) and

𝑣̃𝑘+1 = 𝖿 𝗅(𝑁𝑤̃𝑘+1) = 𝖿 𝗅

(

𝑤̃𝑘+1 − 𝑒

( 𝑛
∑

𝑖=1
𝑓𝑖(𝑤̃𝑘+1)𝑖

))

(33)

be the vectors obtained by approximating 𝑄ℎ𝑣̃𝑘 in floating-point arithmetic,
and let the sequence 𝜖𝑘 be defined recursively as

𝜖0 = 0,

𝜖𝑘+1 = 𝛾𝑛+2
‖

‖

‖

[

𝐼 −𝑒𝑖∗
]

‖

‖

‖

(

‖

‖

𝑤𝑘+1
‖

‖

+ ‖

‖

𝑒𝑖∗‖
‖

‖

‖

𝑤̃𝑘
‖

‖

)

+ ‖𝑁‖ (𝛾𝑧 ‖𝑀‖ + 𝛿) ‖
‖

𝑣̃𝑘‖‖ + ‖

‖

𝑄ℎ
‖

‖

𝜖𝑘. (34)

Then,
‖

‖

‖

𝑣̃𝑘 −𝑄𝑘
ℎ𝑣0

‖

‖

‖𝓁∞
≤ 𝜖𝑘, 𝑘 = 0, 1, 2,… .

Proof. Standard forward error analysis of the formula (33) gives
‖

‖

𝑣̃𝑘+1 −𝑁𝑤̃𝑘+1
‖

‖

≤ ‖

‖

‖

[

𝐼 −𝑒𝑖∗
]

‖

‖

‖

𝛾𝑛+2 ‖‖𝑤̃𝑘+1
‖

‖

.

his bound is essentially the same that would follow from applying
emma 8.10 to the product 𝑣̃𝑘+1 =

[

𝐼 −𝑒𝑖∗
]

𝑤̃𝑘, only with 𝛾𝑛+2 instead
f 𝛾𝑛+1 because forming the products in 𝑒𝑖∗ could in principle introduce
nother relative error of the magnitude of the machine precision. (Note
hat this additional error term can be omitted in the case of the
iecewise linear discretization, since 𝑒 is the vector of all ones and
roducts with its entries are exact.)

Moreover,

(𝑁𝐿ℎ −𝑄ℎ)𝑣̃𝑘‖‖ = ‖

‖

𝑒𝑖∗𝑣̃𝑘‖‖
= ‖

‖

𝑒𝑖∗(𝑣̃𝑘 −𝑁𝑤̃𝑘)‖‖
≤ ‖

‖

𝑒𝑖∗‖
‖

‖

‖

𝑣̃𝑘 −𝑁𝑤̃𝑘
‖

‖

≤ ‖

‖

𝑒𝑖∗‖
‖

‖

‖

‖

[

𝐼 −𝑒𝑖∗
]

‖

‖

‖

𝛾𝑛+2 ‖‖𝑤̃𝑘
‖

‖

.

nce we have established these bounds, we can conclude with the
riangle inequality:

𝑘+1 ‖

‖ ̃ ‖ ‖ ̃ ‖
13

𝑣̃𝑘+1 −𝑄ℎ 𝑣0‖
‖

≤
‖

𝑣̃𝑘+1 −𝑁𝑤𝑘+1‖ + ‖

𝑁(𝑤𝑘+1 −𝑀𝑣̃𝑘)‖
+ ‖

‖

𝑁(𝑀 − 𝐿ℎ)𝑣̃𝑘‖‖
+ ‖

‖

(𝑁𝐿ℎ −𝑄ℎ)𝑣̃𝑘‖‖ +
‖

‖

‖

𝑄ℎ(𝑣̃𝑘 −𝑄𝑘
ℎ𝑣0)

‖

‖

‖

≤ ‖

‖

‖

[

𝐼 −𝑒𝑖∗
]

‖

‖

‖

𝛾𝑛+2 ‖‖𝑤𝑘+1
‖

‖

+ ‖𝑁‖ 𝛾𝑧 ‖𝑀‖

‖

‖

𝑣𝑘‖‖
+ ‖𝑁‖ 𝛿 ‖

‖

𝑣𝑘‖‖
+ ‖

‖

𝑒𝑖∗‖
‖

‖

‖

‖

[

𝐼 −𝑒𝑖∗
]

‖

‖

‖

𝛾𝑛+2 ‖‖𝑤𝑘
‖

‖

+ ‖

‖

𝑄ℎ
‖

‖

𝜖𝑘. □

In the case of the piecewise linear projection, ‖𝑒𝑖∗‖𝓁∞ = 1 and
[

𝐼 −𝑒𝑖∗
]

‖

‖

‖𝓁∞
= ‖𝑁‖𝓁∞ = 2.

All the norms appearing in these lemmas can be replaced with
computable bounds from above. To obtain a bound for 𝑄ℎ, we can use
‖

‖

𝑄ℎ
‖

‖

= ‖

‖

𝑀 + (𝐿ℎ −𝑀) + 𝑒(𝑖∗ − 𝑖∗𝐿ℎ)‖‖ ≤ ‖𝑀‖ + 𝛿 + ‖𝑒‖ ‖
‖

𝑖∗ − 𝑖∗𝐿ℎ
‖

‖

.

A bound ‖

‖

𝑖∗ − 𝑖∗𝐿ℎ
‖

‖

≤ ‖𝑖∗ − 𝑖∗𝐋‖ can be computed with a single
vector–matrix product performed in interval arithmetic. In practice this
approach performed quite well in our examples, since ‖𝑖∗ − 𝑖∗𝐋‖ is quite
mall for all the experiments described in Section 9.

A full algorithm, for both the 𝓁1 and 𝓁∞ norms, is sketched in
lgorithm 2. If 𝑀 has at most 𝑧 nonzeros in each row, this computation
equires 𝑂(𝑛2𝑧𝑘max) arithmetic operations.

emark 8.13. It follows from (34) that 𝜖𝑘+1 ≥ ‖

‖

𝑄ℎ
‖

‖

𝑘 𝜖1, i.e., in the
non-𝑖-preserving case the bounds grow by at least a factor ‖

‖

𝑄ℎ
‖

‖

at each
iteration. A more careful analysis could be made to replace some terms
‖

‖

𝑄ℎ
‖

‖

𝑘 with ‖

‖

‖

𝑄𝑘
ℎ
‖

‖

‖

; we have implemented that and combined it with the
bounds (21), but in the end we observed no practical advantage, since
the bounds produced by (21) are much worse than ‖

‖

𝑄ℎ
‖

‖

𝑘 for moderate
values of 𝑘, see Figs. 2 and 3.

8.5. Aggregating norm bounds from various sources

Bounds on the form
‖

‖

‖

‖

𝑄𝑘
ℎ| 0

ℎ

‖

‖

‖

‖

≤ 𝐶𝑘 come from various sources, some
a priori, some requiring explicit computation:

(1)
‖

‖

‖

‖

𝑄𝑘
ℎ| 0

ℎ

‖

‖

‖

‖

≤ ‖

‖

‖

𝑄𝑘
ℎ
‖

‖

‖

≤ ‖

‖

𝑄ℎ
‖

‖

𝑘 ≤ (‖𝐋‖ + ‖𝑒‖ ‖𝑖∗ − 𝑖∗𝐋‖)𝑘, from basic
‖ ‖
norm properties. For the Ulam discretization,
‖

𝑄ℎ‖ = 1, hence
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c

b

Algorithm 2 Algorithms to estimate norms of powers
1: function norm1_of_powers(𝑀 , 𝑘max)

Require: 𝑀 = mid(𝐋), 𝛿 = ‖rad(𝐋)‖
Ensure: bounds 𝐶𝑘 ≥

‖

‖

‖

‖

(𝑄ℎ)𝑘| 0
ℎ

‖

‖

‖

‖𝓁1
for 𝑘 = 1, 2,… , 𝑘max

2: for 𝑘 = 1,… , 𝑘max do
3: 𝐶𝑘 ← 1
4: end for
5: for 𝑗 = 1, 2,… , 𝑛 − 1 do
6: 𝑣 ← 𝑒1 − 𝑒𝑗+1;
7: for 𝑘 = 1,… , 𝑘max do
8: 𝑣 ← 𝑀𝑣 ⊳ Rounding to nearest
9: 𝑣 ← 𝑣 − 𝑒𝑖∗𝑣 ⊳ Skipped if 𝑖-preserving

10: 𝐶𝑘 ← max(𝐶𝑘, ‖𝑣‖𝓁1 + 𝜖𝑘) ⊳ Rounding up; 𝜖𝑘 as in (32)
or (34)

11: end for
12: end for
13: end function
14: function norminf_of_powers(𝑀 , 𝑘max)
15: ⊳ compute bounds 𝐶𝑘 ≥

‖

‖

‖

‖

(𝑄ℎ)𝑘| 0
ℎ

‖

‖

‖

‖𝓁∞
for 𝑘 = 1, 2,… , 𝑘max

16: for 𝑘 = 1,… , 𝑘max, 𝑖 = 1,… , 𝑛 do
17: 𝑆𝑖𝑘 ← 0
18: end for
19: for 𝑗 = 1, 2,… , 𝑛 − 1 do
20: 𝑣 ← 𝑒1 − 𝑒𝑗+1;
21: for 𝑘 = 1,… , 𝑘max do
22: 𝑣 ← 𝑀𝑣 ⊳ Rounding to nearest
23: 𝑣 ← 𝑣 − 𝑒𝑖∗𝑣 ⊳ Skipped if 𝑖-preserving
24: 𝑆𝑖𝑘 ← 𝑆𝑖𝑘 + |

|

𝑣𝑖||+ 𝜖𝑘 ⊳ Rounding up; 𝜖𝑘 as in (32) or (34)
25: end for
26: end for
27: for 𝑘 = 1,… , 𝑚 do
28: 𝐶𝑘 ← max𝑖 𝑆𝑖𝑘
29: end for
30: end function

this bound is the constant 1. This norm is fast to compute, and
effective for low values of 𝑘, but it will never get below 1, as
‖

‖

𝑄ℎ
‖

‖

≥ 1.

(2)
‖

‖

‖

‖

𝑄𝑘
ℎ| 0

ℎ

‖

‖

‖

‖

≤ ‖

‖

‖

𝑄𝑘
ℎ
‖

‖

‖

≤ 𝑆1𝑅𝑘,ℎ,1 + 𝑆2𝑅𝑘,ℎ,2, from (21). For the
Ulam discretization, 𝐸 = 0, hence this bound is once again the
constant 1. This a-priori bound requires only the Lasota–Yorke
inequality constants, but it is typically equal of worse than the
other alternatives.

(3)
‖

‖

‖

‖

𝑄𝑘
ℎ| 0

ℎ

‖

‖

‖

‖

≤ min0<𝑖<𝑘(𝐶𝑖𝐶𝑘−𝑖), which comes from the sub-multipl-
icativity of norms and the fact that 𝑄( 0

ℎ ) ⊆  0
ℎ . This estimate

is based on the bounds 𝐶𝑖 obtained for 𝑖 < 𝑘 with the other
methods, but once those are available it is cheap to compute
and effective. It becomes useful only after bounds smaller than
1 have already been obtained for at least some 𝑖 < 𝑘.

(4a) computational estimates obtained with Algorithm 2. These
bounds can be poor for small values of 𝑘, but they are our only
resource to get non-trivial bounds smaller than 1 in the first
place. As their cost scales with 𝑂(𝑛2), these can be computed
effectively only for discretizations with moderate 𝑛.

(4b) estimates obtained from a coarser grid using (22). These bounds
are an effective replacement of those in Item 4a when 𝑛 is large.
Exactly like the bounds in Item 4a, these are typically poor for
small values of 𝑘, but they are the key ingredient to achieve
bounds smaller than 1 in the coarse-fine strategy.

For each 𝑘, our upper bound 𝐶𝑘 is the minimum of the bounds coming
14

from items (1)–(4a) (or (4b)). It is essential to use multiple sources of
Fig. 4. Norm bounds obtained from various sources for the Ulam discretization of the
third iterate of the Lorenz map (38) with 𝑛𝐹 = 65536; they are obtained from 𝑘max = 10
omputational norm bounds on the coarse grid with 𝑛 = 1024.

ounds: the bound in item (1) is effective for small values of 𝑘; the
bound in item (4) is the only one that can go below 1, and the bound
in (3) can be used to combine the other ones and extend them to larger
values of 𝑘. We plot in Figs. 2 and 3 the norm bounds obtained from
all these sources, on two representative examples with the Ulam and
piecewise linear discretizations.

We note that the two-grid strategy is not guaranteed to succeed and
yield a bound 𝐶𝐹

𝑚 < 1 for some 𝑚: in particular, when 𝑛 is too small (and
ℎ too large), the second term in the right-hand side of (22) is greater
than 1 even for large values of 𝑚. An example is shown in Fig. 4.

8.6. The algorithms

Putting everything together, we can formulate the following algo-
rithms. To compute a one-grid bound for a dynamic using a discretiza-
tion with 𝑛 equal intervals, we

(1) (DFLY coefficients) Compute the coefficients 𝐴,𝐵 of the Lasota–
Yorke inequality (2). This computation requires finding rigorous
bounds on the 𝑇 ′ and the distorsion 𝑇 ′′∕(𝑇 ′)2 on each branch of
the dynamic, via interval optimization. Its cost does not depend
on the discretization size 𝑛.

(2) (matrix assembly) Construct an interval sparse matrix 𝐋 ∋ 𝐿ℎ
with Algorithm 1. Its cost is 𝑂(𝑏𝑛).

(3) (eigenvalue computation) Compute an approximated eigenvec-
tor 𝑄ℎ𝑢̃ℎ ≈ 𝑢̃ℎ using the restarted Arnoldi method in machine
arithmetic. Also compute rigorous bounds 𝜀1 ≥ ‖

‖

𝑄ℎ𝑢̃ℎ − 𝑢̃ℎ‖‖ and
𝜀2 ≥ |

|

𝑖∗𝑢̃ℎ − 1|
|

which will be needed in 8.3.
(4) (norms of powers) Compute norm bounds

‖

‖

‖

‖

𝑄𝑘
ℎ| 0

ℎ

‖

‖

‖

‖

≤ 𝐶𝑘 for

𝑘 = 1, 2,… , 𝑘max, using Algorithm 2 to obtain some first com-
putational bounds and the techniques in Section 8.5 to refine
them. The value of 𝑘max chosen must be sufficient to obtain
𝐶𝑘max

< 1; if this inequality does not hold, we can repeat the
computation with a larger value of 𝑘max. If we choose to multiply
by 2 the value of 𝑘max at each restart, then the cost of this step
is 𝑂(𝑛2𝑧𝑘max), with 𝑧 ∼ 𝑏 and 𝑘max ∼ log 𝑛 (by the arguments in
Section 3.1). Assuming a constant number of iterations suffices,
its cost is 𝑂(𝑛𝑧).

(5) (error estimation) Using interval arithmetic or directed rounding
to get rigorous bounds, compute the bound for ‖

‖

𝑢 − 𝑢̃ℎ‖‖ in 8.3.
The cost for this step is merely 𝑂(𝑘max), since 𝜀1 and 𝜀2 have
already been computed.

The computational cost of this algorithm scales as 𝑂(𝑛2 log 𝑛), seriously
limiting its usefulness when large values of 𝑛 are required. To reduce
the cost, we can compute instead a two-grid bound as follows, using
a coarse grid with 𝑛𝐶 equal intervals and a fine grid with 𝑛𝐹 equal
intervals.

(1) (DFLY coefficients) Compute the coefficients 𝐴,𝐵 of the Lasota–
Yorke inequality (2), as above.
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Fig. 5. Error bounds proved and CPU time breakdown along the five steps of the algorithms in Section 8.6 for the Lanford map (35).
(2) (coarse matrix+norms) Perform steps 2 and 4 of the previous
algorithm with 𝑛 = 𝑛𝐶 . The cost is 𝑂(𝑛2𝐶𝑏 log 𝑛𝐶 ) as argued above.

(3) (matrix assembly) Construct 𝐋 ∋ 𝐿ℎ𝐹 with Algorithm 1. Its cost
is 𝑂(𝑏𝑛𝐹 ).

(4) (eigenvalue computation) Compute an approximated eigenvec-
tor 𝑄ℎ𝐹 𝑢̃ℎ𝐹 ≈ 𝑢̃ℎ𝐹 , as well as 𝜀1 and 𝜀2 as above. This step costs
𝑂(𝑛𝐹 𝑧).

(5) (error estimation) Compute norm bounds 𝐶𝑘,𝐹 using the tech-
niques in Section 8.5, with Step 4b instead of 4a, and use them
to compute a bound for ‖

‖

‖

𝑢 − 𝑢̃ℎ𝐹
‖

‖

‖

using 8.3 (with 𝑛 = 𝑛𝐹 ). This
step costs 𝑂(𝑘max).

The total cost depends quadratically on 𝑛𝐶 , but only linearly on 𝑛𝐹 .
We shall see that this algorithm outperforms the one-grid strategy for
suitable values of 𝑛𝐶 and 𝑛𝐹 .

9. Numerical experiments

The proposed algorithm has been implemented in the Julia language
for both the Ulam (Section 6) and piecewise linear projection (Sec-
tion 7). Our code is available on https://github.com/JuliaDynamics/
RigorousInvariantMeasures.jl. The following numerical experiments
have been performed with Julia 1.7.1 on an Imac i7-4790K 4.00 GHz.

9.1. The Lanford map

As a first experiment, we compute the invariant measure of

𝑇 ∶ [0, 1] → [0, 1], 𝑇 (𝑥) = 2𝑥 + 1𝑥(1 − 𝑥) mod 1 (35)
15

2

with the Ulam projection. We tested both the one-grid described above,
with various powers of 2 as the values of 𝑛, and the two-grid bound,
with 𝑛𝐶 = 1024 and various powers of 2 as the values of 𝑛𝐹 . We display
in Fig. 5 the rigorous error bounds on ‖

‖

𝑢 − 𝑢̃ℎ‖‖𝐿1 that have been proved,
and a breakdown of how the CPU time is divided between the steps of
each algorithm described in Section 8.6. Bounds on the same quantity
have been computed in [17], but working on the iterate 𝑇 2 in place of
𝑇 was necessary there, because the inequality [17, Theorem 5.2] there
is weaker than Lemma 5.1 here. The major innovation in this work is
the two-grid strategy, which allows to prove bounds as small as 10−4

in less than one minute of CPU time. With the two-grid strategy (on the
right), larger dimensions can be used, and the majority of time is spent
assembling the matrix 𝐋ℎ𝐹 and computing its fixed point vector.

A detailed analysis of the tradeoff between error bound and CPU
time obtained with various choices of 𝑛, 𝑛𝐶 , 𝑛𝐹 is shown in Fig. 6.
One can see from this plot that the error scales approximately as 𝑡−1∕2

with the one-grid strategy, and approximately as 𝑡−1 with the two-
grid strategy, as predicted by our complexity estimates. After an initial
period to amortize the power norm computation, all sufficiently large
choices of 𝑛 have similar asymptotic efficiency; this suggests that to
improve the precision of an estimate it is better to keep 𝑛 constant and
increase the value of 𝑛𝐹 .

Using the technique above we were able to compute an enclosure
for the Lyapunov exponent of the Lanford map

∫ log(|𝑇 ′
|) 𝑑𝑓 ∈ [0.657657, 0.657667]

where the diameter of enclosure is 9.45 ⋅ 10−6. This estimate was
produced with 𝑛𝐶 = 211 and 𝑛𝐹 = 225 in 1476 s; most of this time was

spent assembling the matrix 𝐋ℎ𝐹 .

https://github.com/JuliaDynamics/RigorousInvariantMeasures.jl
https://github.com/JuliaDynamics/RigorousInvariantMeasures.jl
https://github.com/JuliaDynamics/RigorousInvariantMeasures.jl
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Fig. 6. Error bound vs. time for various choices or 𝑛 and 𝑛𝐹 , for the Lanford map (35). The marker color represents the value of 𝑛 or 𝑛𝐹 .

Fig. 7. Error bounds proved and CPU time breakdown for the non-Markov map (36).
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Fig. 8. Error bound vs. time for various choices of 𝑛 and 𝑛𝐹 on the non-Markov map (36).
9.2. A non-linear non-Markov map

We consider the following nonlinear modification of 17
5 𝑥 mod 1:

𝑇 (𝑥) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

17
5 𝑥 0 ≤ 𝑥 ≤ 17

5 ,
34
25 (𝑥 − 5

17 )
2 + 3(𝑥 − 5

17 ),
5
17 < 𝑥 ≤ 10

17 ,
34
25 (𝑥 − 10

17 )
2 + 3(𝑥 − 10

17 ),
10
17 < 𝑥 ≤ 15

17 ,
17
5 (𝑥 − 15

17 )
15
17 < 𝑥 ≤ 1,

(36)

again with the Ulam projection. This is another of the dynamics con-
sidered in [17], this time without modification. We display the same
information in Figs. 7 and 8.

This experiment is more challenging, especially since 𝑛𝐶 = 210 is
required to reach a bound 𝐶𝑘max

< 1 with the two-grid strategy, but the
same features appear in the plots, highlighting in particular the massive
improvements provided by the two-grid strategy.

Using the technique above we were able to compute an enclosure
for the Lyapunov exponent of this map

∫ log(|𝑇 ′
|) 𝑑𝑓 ∈ [1.21933, 1.22016]

where the diameter of enclosure is 0.00082. The computation time to
obtain such an approximation was 2110 s.

9.3. A Markov perturbation of 4𝑥 mod 1

The next example we consider is

𝑇 (𝑥) = 4𝑥 + 0.01 sin(8𝜋𝑥) mod 1. (37)
17
In this experiment, we use the piecewise linear discretization to provide
a bound to ‖

‖

𝑢 − 𝑢̃ℎ‖‖𝐿∞ in the 𝐿∞ norm, again replicating an example
in [17]. The results are reported in Figs. 9 and 10.

Despite the different projection, the workload and results are very
similar. Note that assembling the matrix 𝐋 is more expensive than in
the other examples; this is not related to the different projection, but it
is due to the fact that providing certified enclosures for trigonometric
functions is computationally expensive.

Using the technique above we were able to compute an enclosure
for the Lyapunov exponent of this map

∫ log(|𝑇 ′
|) 𝑑𝑓 ∈ [1.38530, 1.38531]

where the diameter of enclosure is 3.3 ⋅ 10−6. The computation time to
obtain such an approximation was 3016 s.

9.4. One-dimensional Lorenz map

The Lorenz system is a famous example of a 3-dimensional vector
flows that, presents a strange attractor. We refer to [41] for a historical
introduction to the geometric model of the Lorenz system and a careful
presentation of its construction; the example we present in this subsec-
tion is the one-dimensional map associated to the stable foliation of the
geometric Lorenz system studied in [42].

This map is

𝑇 (𝑥) =

⎧

⎪

⎨

⎪

⎩

𝜃 ||
|

𝑥 − 1
2
|

|

|

𝛼
0 ≤ 𝑥 < 1

2 ,

1 − 𝜃 ||
|

𝑥 − 1
2
|

|

|

𝛼 1
2 < 𝑥 ≤ 1,

(38)

with 𝛼 = 51∕64 and 𝜃 = 109∕64. Note that the derivative of this map
goes to ∞ as we approach 1∕2, so the one-step Lasota–Yorke inequality
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Fig. 9. Error bounds proved and CPU time breakdown for the ‘‘4𝑥 perturbed’’ map (37).

Fig. 10. Error bound vs. time for various choices of 𝑛 and 𝑛𝐹 on the ‘‘4𝑥 perturbed’’ map (37).
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L

𝐴

t

V

Fig. 11. Error bounds proved and CPU time breakdown for the third iterate of the Lorenz map (38).
A
b
a
a
‘

which we have been using in the other examples does not hold; by
direct computation, one sees that 𝑇 ′′∕(𝑇 ′)2 behaves as |𝑥− 1∕2|−𝛼 near
1∕2, and hence it is unbounded.

Lemma 9.1. Let 𝑇 ∶ [0, 1] → [0, 1] and suppose there exists a finite
partition {𝑃𝑘}𝑏𝑘=1 of [0, 1] such that

(1) 𝑇𝑘 = 𝑇 |𝑃𝑘 is 𝐶2,
(2) |𝑇 ′(𝑥)| > 2 for all 𝑥 ∈ [0, 1].

et 𝐼𝑙 = {𝑥 ∣ |𝑇 ′′∕(𝑇 ′)2| ≥ 𝑙} and suppose there exists an 𝑙 such that

= 1
2 ∫𝐼𝑙

|

|

|

|

𝑇 ′′

(𝑇 ′)2
|

|

|

|

𝑑𝑚 + 2
inf(|𝑇 ′

|)
< 1,

hen

ar 𝐿𝑓 ≤ 𝐴Var(𝑓 ) +
(

max
𝑘

2
|𝑃𝑘|

+ 𝑙
)

‖𝑓‖𝐿1 .

To prove a one-step Lasota–Yorke inequality for our example, we
applied this lemma to the third iterate of the map 𝑇 . The coefficients
in the obtained inequality are large (𝐴 ≈ 0.922, 𝐵 ≈ 48.43) and quite
expensive to compute (about one minute).

The results obtained are presented in Figs. 11 and 12. One can see
that the error bounds are generally worse than those obtained with
the previous maps; in particular, we need to use a larger value of
the coarse discretization size 𝑛. Indeed, the two-grid strategy fails to
produce useful bounds when used with 𝑛 = 1024: due to the large value
of 𝐵, with this choice of ℎ the formula (22) produces only bounds for
𝑄𝑚

ℎ𝐹
| 0

ℎ𝐹
that are larger than 1, hence the convergence of the series
19

appearing in (13) cannot be proved with Lemma 3.7 and the method e
fails. Nevertheless, larger values of 𝑛 and 𝑛𝐹 yields valid bounds for the
error, as shown in Fig. 12; the two-grid strategy eventually surpasses
the efficiency of the one-grid bounds, and for instance it is faster by an
order of magnitude when one seeks to prove an error bound of 10−2.

Using the technique above with 𝑛𝐶 = 217, 𝑛𝐹 = 224, we can compute
an enclosure for the Lyapunov exponent of this map

∫ log(|𝑇 ′
|) 𝑑𝑓 ∈ [0.580676, 0.786467]

where the diameter of enclosure is 0.2058. The computation time to
obtain such an approximation was 101 828 s.

9.5. Limitations of machine arithmetic

In several computations involved in our algorithm, floating point
arithmetic gives a lower bound on the attainable precision:

• the diameter of the interval entries of the interval matrix repre-
senting the discretized operator is generically bounded below by
machine precision,

• machine floating point arithmetic is going to be the main source
of the error stemming from the computation of the residual ‖𝑃𝑢ℎ−
𝑢ℎ‖.

possible strategy to overcome machine arithmetic limitations could
e to first compute a coarse approximation in machine arithmetic,
llowing us to estimate mixing rates 𝐶𝑘, and then compute a finer
pproximation in higher precision floating point arithmetic, i.e., a
‘low-precision coarse – high-precision fine’’ scheme.

While this corresponds to a small modification of the code, no

xperiments have been done in this direction.
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Fig. 12. Error bound vs. time for various choices of 𝑛 and 𝑛𝐹 on the third iterate of the Lorenz map (38).
Another, much more serious problem arising from machine pre-
cision is the numerical error arising in our norm estimates. If the
discretized operator is not sparse, it may be impossible to prove that
one of its iterates contracts 0, due to the estimates we need to put in
place to guarantee an upper bound of the norm, see Section 8.4. This
can also be solved by using higher precision floating point numbers,
but the computational overhead would be difficult to manage.

10. Final remarks and considerations

In this paper we introduced a general framework for the approx-
imation of invariant measures. We gave a finite set of inequalities
that, once proved, give rise to an algorithm for the approximation,
once we can prove computationally the existence of an 𝑚 such that
‖

‖

‖

𝑄𝑚
ℎ |0

‖

‖

‖

≤ 𝐶𝑚 < 1.

On the computational side, the major contribution of this paper
is the new ‘‘coarse-fine’’ framework based on two discretizations with
grids of different sizes; this framework greatly reduces the computa-
tional burden of the estimation algorithms introduced in [17]. The
experiments in [17] relied on computational norm estimation with
Algorithm 2, which requires 𝑂(𝑚𝑛2) floating point operations to obtain
estimates 𝐶𝑘 for 𝑘 ≤ 𝑚. Typically, 𝑛 ≈ 105 to 106 is needed to get a
meaningful estimate, so this computation was doable, but extremely
slow. Here, we give a strategy to combine bounds from various sources
in Section 8.5, including in particular those coming from the coarse-
fine strategy (22). This improvement gives a major reduction in the
computational time: while the results in [17] were obtained on a
supercomputing cluster, we can replicate them in a few minutes on a
common laptop computer.
20
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