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Abstract

We prove the existence of noise induced order in the Matsumoto–Tsuda model,

where it was originally discovered in 1983 by numerical simulations. This is a

model of the famous Belousov–Zhabotinsky reaction, a chaotic chemical reac-

tion, and consists of a one dimensional random dynamical system with addi-

tive noise. The simulations showed that an increase in amplitude of the noise

causes the Lyapunov exponent to decrease from positive to negative; we give

a mathematical proof of the existence of this transition. The method we use

relies on some computer aided estimates providing a certi�ed approximation

of the system’s stationary measure in the L1 norm. This is realized by explicit

functional analytic estimates working together with an ef�cient algorithm. The

method is general enough to be adapted to any piecewise differentiable dynam-

ical system on the unit interval with additive noise. We also prove that the

stationary measure varies in a Lipschitz way if the system is perturbed and that

the Lyapunov exponent of the system varies in a Hölder way when the noise

amplitude increases.
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1. Introduction

The ‘noise induced order’ phenomenon was discovered in numerical simulations and experi-

ments regarding systems modelled by a deterministic dynamics perturbed by noise. The some-

what surprising phenomenon emerging is that the system appears to be chaotic for very small

noise intensity, but when the intensity increases the system begins to have a less and less

chaotic behaviour, passing from a positive Lyapunov exponent to a negative one. A similar

behaviour was also found for other indicators of chaos. This paper however will focus only on

the Lyapunov exponent.

The phenomenon was �rst discovered by numerical simulations in [24] in a system related

to the famous Belousov–Zhabotinsky reaction (see �gure 1) modelled by a one dimensional

map perturbed by additive noise. Real experiments con�rmed the existence of the phenomenon

appearing in the model of the reaction (see [34], and also [11, 21, 25, 33, 35, 36], for some

examples of related works).

Despite the impact that the discovery of such noise induced phenomena had in the non-

linear science and physical literature (more than 390 citations to [24] on Google Scholar at

the moment of writing this paper) to the best of our knowledge there is no mathematical

literature about noise induced order or rigorous proofs of its actual existence in nontrivial

systems.

The mathematical study of this phenomenon is dif�cult because in the deterministic part

of the dynamics (see �gure 2) there is a coexistence of strongly expanding and strongly con-

tracting regions and the prevalence of expanding or contracting behaviour for typical orbits

is a consequence of the global structure of the dynamics. We remark that this phenomenon is

one dimensional and inherently nonlinear, thus mathematically not much related to the noise

induced stabilization studied in [2] and following papers. With the help of some computer

aided estimates we prove that the global structure of this random system, allows expansion to

prevail when the noise amplitude is very small, but the appearance of quite a large noise allows

the contraction to prevail.

Our approach is based on the fact that the presence of the noise simpli�es the functional

analytic properties of the transfer operator associated to the system, smoothing out �ne resolu-

tion details, and making it well approximable by a �nite resolution and �nite dimensional

one. This makes a computer aided proof possible, letting the computer manage the com-

plexity of the deterministic part of the system at a �nite resolution scale and understanding

the global structure of the dynamics. However, the computational power required to per-

form these computations in a naive way is out of the range of current computers. This is

true mostly for proving that the Lyapunov exponent is positive in some case of very small

noise range. Indeed small noise corresponds to high resolution needed in the study of the sys-

tem. Because of this we had to �nd some mathematical clever way to perform the needed

estimates, using different functional spaces. This is the main part of the mathematical work

contained in what follows and can be applied to many other dynamical systems perturbed

by noise. The algorithm we develop in this work was indeed already used in [4, 10] for the

study of other dynamical systems with additive noise considered as models of certain phe-

nomena in climate science and neuroscience (other applications to linear response appear

in [12]).

It is known that naive computer simulations of chaotic systems may not be reliable in some

case (see [8, 16–18, 20] for examples of misleading naive simulations and a general discussion

on the problem). Beside the pure mathematical interest of a rigorously proved result and a

rigorously certi�ed estimate, the study of inherently reliable methods for the numerical study

of chaotic dynamical systems is strongly motivated.

4238



Nonlinearity 33 (2020) 4237 S Galatolo et al

Figure 1. A sequence of pictures showing various stages of the evolution of the
Belousov–Zhabotinsky reaction. Reprinted from [37], copyright (1973), with permis-
sion from Elsevier.

Figure 2. The map Ta,b,c.

Overview of the results. In this work we consider the model of the Belousov–Zhabotinsky

reaction studied in [24] (see also [38] for explanations on how the model can be deduced from

the chemical mechanism of the BZ reaction). This is a random dynamical system: a determin-

istic map with additive noise at each iteration. The deterministic part of the dynamics in the

model is driven by a map Ta,b,c : [0, 1]→ [0, 1] de�ned by

Ta,b,c(x) =















(

a+

(

x −
1

8

)
1
3

)

e−x + b, 0 6 x 6 0.3

c
(
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−10x
3

)19

+ b, 0.3 < x 6 1

(1)

4239



Nonlinearity 33 (2020) 4237 S Galatolo et al

where

a ∈ 0.501 319 599 371 053 047 956 980 141 736 828 203 749 380 990 114 218

225 638 82796, (2)

b ∈ 0.023 288 528 303 070 320 544 781 580 440 239 187 356 699 436 480 888

526 461 231 827 398 310 225 28213158, (3)

c ∈ 0.121 205 692 738 975 111 744 666 848 150 620 569 782 497 212 127 938

371 936 404 761 693 002 104 36185. (4)

The graph of an example of Ta,b,c is shown in �gure 2. Following the Inverval Arithmetics
formalism we represent intervals in the real line by subscript and superscript describing the

decimal expansion of lower and upper bounds for x so that x ∈ 0.klmxyz
tuv means that x belongs

to the interval [0.klmtuv, 0.klmxyz]. The choice of a, b, c follow the one made in [24], adding

some more precision (see remark 5 for more details).

Remark 1. The interval arithmetics and its certi�ed numerical methods (see [31] for an

introduction) allow to obtain rigorous results as output of the computer aided estimates. Our

computer aided estimates are implemented in this framework. We used SAGE [28] and the

validated numerics packages shipped with it. (The interval package is a binding to MPFI [27].)

Part of the numerical linear algebra was done using OpenCL [30] running on Nvidia graphic

cards.

At each iteration of the map a uniformly distributed noise perturbation with span of size ξ
is applied. Further details on the system are presented in section 2.

In the paper we prove that when the noise size ξ is contained in the interval [ξ1, 1/2] where
ξ1 =

8.73
105

this random system has a unique ergodic absolutely continuous stationary measure

µξ (see proposition 46) and consider the associated Lyapunov exponent

λξ :=

∫ 1

0

log |T ′(x)|dµξ .

We prove that the behaviour of λξ in the system is similar to the one found by the numerical

investigations of Matsumoto and Tsuda ([24]). In particular there is a transition from positive
to negative exponent as the noise amplitude increases.We provide explicit examples of values

for the noise amplitude having positive and negative Lyapunov exponent. In particular, the

�ndings of the present work applied to the Belousov–Zhabotinsky model de�ned above allow

to state the following

Theorem 2. Let λξ be the Lyapunov expontent of the system de�ned above4 with noise of
size ξ. For each α < 1,λξ is α−Hőlder continuous as a function of ξ when ξ ∈ [ 8.73

105
, 1/2];

furthermore for ξ1 = 8.73
105

and ξ2 =
8.60
103

it holds

I1 the Lyapunov exponent λξ1 ∈ [ 8.365
102

, 8.917
102

], hence it is rigorously certi�ed to be positive;
I2 the Lyapunov exponent λξ2 ∈ [−6.036 02

10
, −6.035 36

10
], hence it is rigorously certi�ed to be

negative.

4 For every choice of the coef�cients a, b, c of (1) as in (2)–(4).
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Therefore, the system exhibits noise induced order.

We refer to section 6 for the results proving the change of sign for the Lyapunov exponent,

while we refer to section 7 (see corollary 43) for the Hőlder regularity of the Lyapunov expo-

nent. In the paper, we estimate similarly the Lyapunov exponent for many other values of the

noise size. The results are reported in table 1 and described in �gure 4 by a graph.

The method of proof and certi�cation of these results relies on the approximation of the

stationary measure µξ of the system up to a certi�ed error in the L1 norm5. Using this approx-

imation we can compute the Lyapunov exponent of the system up to a small certi�ed error.

The methods used however are general enough to be applied to any system formed by piece-

wise differentiable maps of the interval perturbed by additive noise having a bounded variation

distribution (see sections 2 and 3.3 for a more detailed discussion).

Remark 3. Although theorem 2 certi�es the existence of the noise induces order in the

system, it does not give an intuitive explanation of ‘why’ this phenomenon occurs.

An argument which can give an approximate explanation of the existence of the noise

induced order in a class of systems similar to the one studied in this paper might be the fol-

lowing: the map Ta,b,c is a map which is near to a unimodal map T of Misiurewicz type. Those

maps have positive Lyapunov exponent. If the map T is statistically stable under the adding of

a small amount of noise (see e.g. [3]) we can expect that also in the case of small noise the

resulting random system will have positive Lyapunov exponent.

On the other hand suppose that
∫

log|T ′|dm < 0 where the integral is made with respect to

the Lebesgue measure (this condition can be easily veri�ed for a given map, and it is veri�ed

for example if the ‘critical point’ of the unimodal map is �at enough). When the noise is large

enough we can expect the stationary measure of the system to converge to the uniform distri-

bution, hence to the Lebesgue measure, letting the Lyapunov exponent of the resulting random

system to become negative.

This heuristic argument can be made rigorous in interesting classes of systems, as it is done

in the very recent work [26] and proving the existence of some kind of noise induced order in

those systems.

Howeverwe remark that in the model of the BelousovZhabotinsky reactionwe consider, the

adding of a large noise would have no physical sense, bringing the model’s parameters outside

its natural range. As a matter of fact, in the paper [24] the transition occurs for small values of

the noise size, where the stationary measure (see �gure 3) is far from the uniformly distributed

one, hence this idea is far from explaining this transition. Furthermore the map considered in

our paper and in the model is not necessarily exactly of Misurevicz type and indeed this is not

used in our proof.

Plan of the paper. In section 2 we describe the systems under study and we introduce

the technique we use for the approximation of the transfer operator. The techniques leading

to the proof of theorem 2 are explained in a sequence of settings of decreasing generality

where the needed assumptions on the system are listed (see settings 14 and 19). In section 3

we describe how to �nd an explicit bound on the approximation error for the computation of

the stationary measure. In subsection 3.3 we describe an ef�cient procedure which exploits

5The computation of stationary measures for dynamical systems perturbed by noise was approached from different

points of view in [19] where the convergence (without effective bounds on the approximation error) of an approxima-

tion scheme based on Fourier analysis was proved for certain classes of maps, and in [7], where the computability of

the stationary measure up to a given error was considered in an abstract framework, giving bounds on the computa-

tional complexity of the problem. The rigorous computation of the stationary measure for expanding and contracting

iterated function systems is considered in [15].
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Table 1. The input and output of our computer aided estimates. In particular the �rst column shows the size of the noise, the �fth column shows
the size of the approximation grid, the last column shows intervals enclosing the exact value for the Lyapunov exponent related to the noise size in
the �rst column. See section 6 for explanations on all the other values.

ξ, noisesize δcontr αcontr ncontr δ α
∑ncontr

i=0 Ci

A priori L1 err.
on measure δest

Re�ned L1 err.
on measure

rig. estimate on

Lyapunov exponent

0.860 × 10−2 2−18 0.023 56 2−27 0.044 29.54 0.445 × 10−4 2−14 0.246 × 10−5 −6.03536602 × 10−1

0.785 × 10−2 2−18 0.017 58 2−27 0.039 29.20 0.479 × 10−4 2−14 0.257 × 10−5 −5.499221901 × 10−1

0.721 × 10−2 2−18 0.013 60 2−27 0.037 28.95 0.517 × 10−4 2−14 0.268 × 10−5 −4.985026749 × 10−1

0.661 × 10−2 2−18 0.015 60 2−27 0.04 28.75 0.562 × 10−4 2−14 0.282 × 10−5 −4.467104862 × 10−1

0.606 × 10−2 2−18 0.022 54 2−27 0.05 28.44 0.612 × 10−4 2−14 0.296 × 10−5 −3.95558636 × 10−1

0.556 × 10−2 2−18 0.015 58 2−27 0.046 28.77 0.672 × 10−4 2−14 0.311 × 10−5 −3.462063884 × 10−1

0.509 × 10−2 2−18 0.014 60 2−27 0.048 29.19 0.747 × 10−4 2−14 0.330 × 10−5 −2.97272360 × 10−1

0.466 × 10−2 2−18 0.019 59 2−27 0.056 29.56 0.832 × 10−4 2−14 0.351 × 10−5 −2.52476568 × 10−1

0.426 × 10−2 2−18 0.032 53 2−27 0.072 29.70 0.930 × 10−4 2−14 0.374 × 10−5 −2.10322419 × 10−1

0.391 × 10−2 2−18 0.025 57 2−27 0.07 30.68 0.104 × 10−3 2−14 0.400 × 10−5 −1.74370474 × 10−1

0.359 × 10−2 2−18 0.023 60 2−27 0.074 31.73 0.118 × 10−3 2−14 0.431 × 10−5 −1.42733844 × 10−1

0.329 × 10−2 2−18 0.028 60 2−27 0.085 32.63 0.134 × 10−3 2−14 0.467 × 10−5 −1.1588600 × 10−1

0.302 × 10−2 2−18 0.034 60 2−27 0.097 33.55 0.152 × 10−3 2−14 0.510 × 10−5 −9.399411 × 10−2

0.277 × 10−2 2−18 0.044 58 2−27 0.11 34.26 0.173 × 10−3 2−14 0.560 × 10−5 −7.692706 × 10−2

0.252 × 10−2 2−18 0.053 56 2−27 0.13 35.04 0.198 × 10−3 2−14 0.626 × 10−5 −6.3035187 × 10−2

0.232 × 10−2 2−18 0.053 56 2−27 0.14 35.94 0.223 × 10−3 2−14 0.693 × 10−5 −5.4305472 × 10−2

0.212 × 10−2 2−18 0.055 56 2−27 0.15 36.88 0.254 × 10−3 2−14 0.784 × 10−5 −4.7769957 × 10−2

0.192 × 10−2 2−18 0.051 58 2−27 0.16 38.21 0.293 × 10−3 2−14 0.909 × 10−5 −4.3776993 × 10−2

0.177 × 10−2 2−18 0.053 58 2−27 0.18 38.98 0.329 × 10−3 2−14 0.104 × 10−4 −4.2654897 × 10−2

0.162 × 10−2 2−18 0.054 58 2−27 0.19 39.82 0.373 × 10−3 2−14 0.121 × 10−4 −4.3194479 × 10−2

0.150 × 10−2 2−18 0.055 58 2−27 0.2 40.53 0.419 × 10−3 2−14 0.139 × 10−4 −4.488521 × 10−2

0.137 × 10−2 2−18 0.063 57 2−27 0.23 41.00 0.476 × 10−3 2−14 0.164 × 10−4 −4.7613992 × 10−2

0.125 × 10−2 2−18 0.066 58 2−27 0.25 42.14 0.554 × 10−3 2−14 0.200 × 10−4 −5.1293750 × 10−2

0.115 × 10−2 2−18 0.071 58 2−27 0.27 43.12 0.636 × 10−3 2−14 0.239 × 10−4 −5.491545 × 10−2

0.105 × 10−2 2−18 0.079 58 2−27 0.3 44.28 0.747 × 10−3 2−14 0.294 × 10−4 −5.9172835 × 10−2

0.960 × 10−3 2−18 0.086 58 2−27 0.34 45.41 0.876 × 10−3 2−14 0.360 × 10−4 a−6.346427 × 10−2

4
2
4
2



N
o
n
lin
e
a
rity

3
3
(2
0
2
0
)
4
2
3
7

S
G
a
la
to
lo
e
t
a
l

Table 1. Continued

ξ, noisesize δcontr αcontr ncontr δ α
∑ncontr

i=0 Ci

A priori L1 err.
on measure δest

Re�ned L1 err.
on measure

rig. estimate on

Lyapunov exponent

0.885 × 10−3 2−18 0.092 58 2−27 0.37 46.43 0.102 × 10−2 2−14 0.436 × 10−4 −6.758855 × 10−2

0.810 × 10−3 2−18 0.095 58 2−27 0.4 47.44 0.119 × 10−2 2−14 0.534 × 10−4 −7.200320 × 10−2

0.748 × 10−3 2−18 0.098 58 2−27 0.43 48.25 0.138 × 10−2 2−14 0.643 × 10−4 −7.569711 × 10−2

0.686 × 10−3 2−18 0.1 57 2−27 0.46 48.65 0.162 × 10−2 2−14 0.779 × 10−4 −7.888
8.061 × 10−2

0.623 × 10−3 2−18 0.099 56 2−27 0.5 49.04 0.192 × 10−2 2−14 0.956 × 10−4 −8.068280 × 10−2

0.573 × 10−3 2−19 0.07 60 2−27 0.29 46.78 0.141 × 10−2 2−15 0.595 × 10−4 −8.076209 × 10−2

0.524 × 10−3 2−19 0.085 56 2−27 0.33 46.32 0.162 × 10−2 2−15 0.696 × 10−4 −7.784940 × 10−2

0.480 × 10−3 2−19 0.07 58 2−27 0.34 47.75 0.185 × 10−2 2−15 0.800 × 10−4 −7.312490 × 10−2

0.436 × 10−3 2−19 0.066 58 2−27 0.36 48.66 0.215 × 10−2 2−15 0.935 × 10−4 −6.653861 × 10−2

0.399 × 10−3 2−19 0.06 60 2−27 0.39 50.39 0.254 × 10−2 2−15 0.110 × 10−3 −5.964
6.208 × 10−2

0.368 × 10−3 2−19 0.065 60 2−27 0.43 51.36 0.299 × 10−2 2−15 0.128 × 10−3 −5.339623 × 10−2

0.343 × 10−3 2−20 0.041 65 2−27 0.24 49.27 0.232 × 10−2 2−16 0.976 × 10−4 −4.871
5.086 × 10−2

0.312 × 10−3 2−20 0.044 65 2−27 0.26 50.33 0.270 × 10−2 2−16 0.112 × 10−3 −4.189436 × 10−2

0.287 × 10−3 2−20 0.048 65 2−27 0.29 51.29 0.309 × 10−2 2−16 0.127 × 10−3 −3.565844 × 10−2

0.259 × 10−3 2−20 0.042 67 2−27 0.31 53.14 0.368 × 10−2 2−16 0.149 × 10−3 −2.659984 × 10−2

0.237 × 10−3 2−20 0.046 67 2−27 0.35 54.32 0.431 × 10−2 2−17 0.144 × 10−3 −1.686998 × 10−2

0.218 × 10−3 2−20 0.05 67 2−27 0.38 55.49 0.504 × 10−2 2−17 0.165 × 10−3 −5.731
9.274 × 10−3

0.199 × 10−3 2−20 0.051 68 2−27 0.42 57.28 0.606 × 10−2 2−17 0.193 × 10−3 2.9887.138 × 10−3

0.184 × 10−3 2−20 0.051 69 2−27 0.46 59.07 0.725 × 10−2 2−17 0.225 × 10−3 1.844362 × 10−2

0.168 × 10−3 2−20 0.053 70 2−27 0.5 61.10 0.896 × 10−2 2−17 0.272 × 10−3 2.977394 × 10−2

0.154 × 10−3 2−21 0.042 74 2−27 0.29 57.78 0.650 × 10−2 2−18 0.708 × 10−4 3.689533 × 10−2

0.142 × 10−3 2−21 0.048 74 2−27 0.32 59.11 0.757 × 10−2 2−18 0.822 × 10−4 4.462282 × 10−2

0.129 × 10−3 2−21 0.049 75 2−27 0.36 60.98 0.901 × 10−2 2−18 0.988 × 10−4 5.239023 × 10−2

0.106 × 10−3 2−21 0.058 75 2−27 0.45 64.34 0.135 × 10−1 2−18 0.154 × 10−3 6.965626 × 10−2

0.873 × 10−4 2−21 0.062 75 2−27 0.55 67.55 0.209 × 10−1 2−18 0.252 × 10−3 8.917365 × 10−2

4
2
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Figure 3. Plot of the computed invariant densities for the noise amplitudes in theorem 2.
On the left, a plot of the approximated invariant density for ξ1 = 0.129 × 10−3 (up to
an error of 0.565 × 10−3 in the L1 norm). On the right, a plot of of the approximated
invariant density for ξ2 = 0.860 × 10−2 (up to an error of 0.973 × 10−5 in the L1 norm).

information coming from a coarse knowledge of the stationary measure in a bootstrap argu-

ment. This procedure uses several technical lemmas estimating the variation of certain densities

and the norms of certain operators; such lemmas are listed in section 3 and proved in Appendix

B tomake reading easier. In section 4 we show an ef�cient procedure (which is used in themain

algorithm) for the estimation of the rate of contraction of a �nite rank transfer operator, when

applied to zero average measures. This is a quantitative measure of the rate of convergence to

equilibrium of the system which is involved in the quantitative estimate of its stability under

perturbation. This is important in the estimation of the approximation error. In section 5 we

show the estimates needed to compute the Lyapunov exponent of the system once we know

the stationary measure. In section 6 we apply all these techniques to the system described in

section 2, showing the results of our computer aided estimates, and proving the existence of

noise induced order (and in particular, theorem 2). In section 7 we consider the stability of

the stationary measure to changes in the system’s parameters and of the Lyapunov exponent

on changes of the noise amplitude proving the Hőlder continuity. Appendix A contains some

de�nitions and generalities about random dynamical systems we include for completeness and

to justify the correctness of the notion of Lyapunov exponent which is estimated in the paper.

2. The system and its transfer operator

In this section we describe more precisely the system which will be studied in the paper and the

associated transfer operators.Basic notions on randomdynamical systems, stationarymeasures

and Lyapunov exponents we use in the paper are presented in Appendix A.

A randomdynamical systemwith additive noise on [0, 1] and re�ecting boundary conditions

is a random perturbation of a deterministic map, de�ned by

x→ T(x)+̂ωn (5)

where T : [0, 1]→ [0, 1] is a Borel measurable map and ωn is an i.i.d. process distributed

according to a probability density ρξ and +̂ is the ‘re�ecting boundaries sum’ on [0, 1] de�ned

as follows.
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Definition 4. Let π :R→ [0, 1] be the piecewise linear map

π(x) = min
i∈Z

|x − 2i|. (6)

Let a, b ∈ R then

a+̂b :=π(a+ b)

where+ is the usual sum operator on R. By this a+̂b ∈ [0, 1].

As described in the introduction, the model studied in the present paper is the one studied in

[24]. We consider a random dynamical system with additive noise, as in (5) where T = Ta,b,c
is de�ned in (1). At each iteration of the map a uniformly distributed noise perturbation with

span of size ξ is added and the re�ecting boundary condition applied.

Remark 5. The parameters a, b, c de�ned below (1) have been computed using interval arith-

metic, in the implementation of our algorithm they are represented by intervals.We explain the

motivation for the choice of the parameters in [24]. The parameter c is de�ned in a way to be

nearby to a value for which T(0.3−) = T(0.3+), making T continuous at 0.3. The exact value

of c giving the continuity can be computed in a closed form as:

c =
20

320 · 7
·

(

7

5

)1/3

· e187/10.

The parameter a is de�ned similarly in a way so that T ′(0.3−) = 0, making T ′ continuous

at 0.3. The value of such a can be computed in a closed form as:

a =
19

42
·

(

7

5

)1/3

.

The choice of the parameter b in [24] is motivated by a parallel with the logistic map.

Let us denote by Tb the map as only the parameter b varies; each Tb has a repelling �xed

point pb. In [24] this explicit value of b is chosen as an approximation of the parameter value

for which T 4(0.3) = pb following the kneading sequence ‘RLLL’, i.e., a Misiurewicz condi-

tion. We computed a certi�ed interval containing b using a Newton interval method [31]. The

interval enclosing b is computed giving the result shown at (3).

We remark that all the results presented in this paper, including the numerical ones hold for

each systemwhose coef�cients are included the intervals considered at (2)–(4) hence including

cases in which Ta,b,c is discontinuous or not satisfying the Misiurewicz condition.

While in our computer assisted estimates we will consider the map given at (1) and uniform

noise, the mathematical treatment about approximation of stationary measures in section 3 and

following is more general.

We start considering a general randomdynamical systemwhere T is measurable and ρ ∈ BV

giving general results and estimates we then improve using more assumptions on the sys-

tem (i.e. T piecewise smooth) putting ourselves in different general settings which are stated

precisely (see settings 14 and 19), to keep the exposition as clear and general as possible.

More precisely, will consider the case where the noise density ρξ is the rescaling of some

bounded variation kernel ρ ∈ BV
[

− 1
2
, 1
2

]

with
∫

ρ = 1 in the interval
[

− ξ
2
, ξ
2

]

, hence

ρξ(x) =
1

ξ
ρ

(

1

ξ
x

)

.
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(see de�nition 20 for a recall on the de�nition of bounded variation.) The case of uniformly

distributed noise correspond to the case ρ = 1.

Remark 6. The re�ecting boundary condition at (5) is not in�uent when the noise amplitude

is smaller than the parameter b (as it will be for all the noise amplitudes considered in our

computer aided proofs, see table 1).

The transfer operator. We study the statistical properties of the dynamical systems with

additive noise, as de�ned at (5) through the study of the properties of their associated transfer

operators. Let us recall that a measurable map T : X→ X, induces a map

L : SM(X)→ SM(X)

where SM(X) is the space of Borel signed measures on X. The associated map L is de�ned in

the following way: if µ ∈ SM(X) then:

Lµ(A) = µ(T−1(A)).

In the literature, L is also called the pushforward map associated to T, sometime denoted by

T∗. It is a linear operator on the vector space SM(X) and it is also called the transfer operator

associated to T. The space of measures with density in L1([0, 1]) can be seen as a subspace of

SM([0, 1]). If T is nonsingular, L can be considered as an operator L1([0, 1])→ L1([0, 1]).
The (annealed) transfer operator Lξ associated to the system with noise is given by the

composition of the transfer operator L and a re�ecting boundary convolution operator Nξ :

SM([0, 1])→ L1([0, 1]) (a suitable modi�cation of the usual convolution), de�ned by

Nξ( f ) := ρξ∗̂ f (7)

where the ‘re�ecting boundaries convolution’ ∗̂ is de�ned similarly to the re�ecting boundaries

sum as

Definition 7. Let µ ∈ SM(R). Let π : R→ [0, 1] be the piecewise linear map de�ned at

(6) and π∗ its associated pushforward map. We consider π∗µ ∈ SM([0, 1]) as the ‘re�ecting

boundary’ version of µ.

Definition 8. Let f ∈ SM([0, 1]), ρξ ∈ BV[−ξ, ξ]. Let f̂ ∈ SM(R) de�ned by f̂ = 1[0,1] f
and ρ̂ξ ∈ L1(R) by ρ̂ξ = 1[−ξ,ξ]ρξ . We de�ne

ρξ ∗̂ f = π∗(ρ̂ξ ∗ f̂ ) (8)

where ∗ stands for the usual convolution operator on R.

This boundary re�ecting convolution operator is regularizing, in particular ρξ ∗̂ f ∈
BV([0, 1]) if f ∈ BV, and has properties similar to the usual convolution operator. For its basic

properties see subsection 3.3.1.

Definition 9. The annealed transfer operator Lξ : SM([0, 1])→ L1([0, 1]) associated to a

deterministic system with additive noise, as described at (5) is de�ned as

Lξ :=NξL. (9)

Remark 10. The annealed transfer operator is obtained by averaging the transfer operator L
over all the possible noise perturbations. We refer to Appendix A for some basic facts on this

operator. In the following we will mainly consider Lξ as an operator L1([0, 1])→ L1([0, 1]). In
the notation we emphasize the dependence of the operator on the amplitude of the noise.
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Definition 11. Let µξ ∈ L1([0, 1]) be a �xed probability measure for Lξ , i.e.,

Lξµξ = µξ

we will call µξ a stationary measure for the system with additive noise or an invariant

measure for Lξ.

By the regularizingproperties of the convolutionby a boundedvariation kernel, and standard

compactness arguments it is easy to see that the transfer operator Lξ corresponding to a map

with additive noise has at least one �xed point fξ in BV[0, 1] (see [12], lemma 23 for more

details). Following [24] we will study the Lyapunov exponent of the system as ξ varies. The

Lyapunov exponent is de�ned as follows:

Definition 12. The average Lyapunov exponent associated to noise size ξ is

λξ :=

∫ 1

0

log |T ′(x)|dµξ . (10)

When µξ is ergodic the average Lyapunov exponent coincides almost everywhere with the

pointwise Lyapunov exponent (see Appendix A). As a byproduct of our computer aided esti-

mates, using the results given in sections 4 and 7 we will prove that the systems considered are

ergodic (see proposition 46). This justi�es the correctedness of the average Lyapunov exponent

as an indicator of the behaviour of the system.

The Ulam Approximation. The main tool for the study of the behaviour of (10) in this

work is the rigorous approximation of the stationary measure µξ . This is done by approxi-

mating Lξ by a �nite dimensional operator Lδ,ξ : L1([0, 1])→ L1([0, 1]). The �xed points of

Lξ are then approximated by the ones of Lδ,ξ with a certi�ed bound on the approximation

error.

Let πδ : L1([0, 1])→ L1([0, 1]) be a projection on a �nite dimensional space de�ned in the

following way: the space [0, 1] is discretized by a partition Iδ (with k elements); the projection

considered is de�ned by the conditional expectation

πδ( f ) = E( f |Fδ) (11)

where Fδ is the σ−algebra associated to the partition Iδ .
The approximated operator is then de�ned by �nite element approach, composing with π:

Lδ,ξ :=πδNξπδLπδ.

The �nite dimensional approximation of an operator based on the conditional expectation,

as above, is commonly called Ulam discretization or Ulam method . This method was widely

studied in the literature (see, e.g [5, 6, 9, 13, 22]).

Observe that

Lnδ,ξ = (πδNξπδL)
nπδ ,

taking into account that π2
δ = πδ . We remark that since ‖πδ‖L1→L1 6 1 and ‖L‖L1→L1 6 1, then

‖Lδ,ξ‖L1→L1 6 1.

Remark 13. Another discretization that could be used is

L̃δ,ξ = πδNξLπδ ;

while this de�nition is reasonable, it is more dif�cult to implement andwould force us to recom-

pute the discretized operator for each size ξ of the noise. Our de�nition permits us to compute
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once and for all πδLπδ which is computationally expensive but leads to a sparse matrix, and

then apply the operator πδNξπδ which is independent of the dynamics.

3. Rigorous approximation of the stationary measure for dynamical systems
with additive noise

The certi�ed approximation of the Lyapunov exponent is based on the certi�ed approxima-

tion of the stationary measure of the system in the L1 norm. This is the main part of our

general construction and is described in this section. The algorithm to approximate the sta-

tionary measure uses both a priori (analytical) and a posteriori (computer assisted) estimates

on the measure and on the transfer operator. For these estimates to be performed we do not
need particular expansion or hyperbolicity properties of the one dimensional map driving the
deterministic part of the dynamics. We now introduce a general and simple algorithm which

works for measurable maps perturbed by additive noise with a Bounded Variation kernel, in

section 3.3 we re�ne this algorithm, assuming that the map is piecewise smooth and getting

much better estimates. In this �rst part of the section we will hence work in the following

setting.

Setting 14. Let us suppose Lξ is the transfer operator of a system with additive noise as
considered in (5). We suppose the noise is distributed according to a bounded variation kernel
ρξ with support in

[

− ξ
2
, ξ
2

]

and the deterministic part of the system is driven by a measurable
map T.

Let Lδ,ξ be the Ulam approximation of Lξ , de�ned by projecting on a partition of size δ. Let
fδ,ξ , fξ ∈ L1 respectively be invariant probability measures of Lδ,ξ and Lξ. Since the measure

fδ,ξ is a �xed point of the �nite dimensional operator Lδ,ξ , it can be computed to any precision.

We will treat now the issue of estimating ‖ fδ,ξ − fξ‖L1 effectively.

Lemma 15. Suppose that for some n ∈ N

‖Lnδ,ξ |V‖L1→L1 6 α < 1 (12)

where V = {ν ∈ L1, ν([0, 1]) = 0} being the space of zero-average measures. Then

‖ fξ − fξ,δ‖L1 6
1

1− α
‖(Lnδ,ξ − Lnξ ) fξ‖L1 . (13)

Remark 16. We remark that Lδ,ξ |V is a �nite dimensional operator and can be represented

by a matrix. Thus is possible for a computer to verify that ‖Lnδ,ξ |V‖L1→L1 6 α for some n.

Proof (Of lemma 15). Since both fξ , fδ,ξ are �xed points we can write

‖ fδ,ξ − fξ‖L1 = ‖Lnδ,ξ fδ,ξ − Lnξ fξ‖L1

= ‖Lnδ,ξ fδ,ξ − Lnδ,ξ fξ + Lnδ,ξ fξ − Lnξ fξ‖L1

6 ‖Lnδ,ξ( fδ,ξ − fξ)‖L1 + ‖(Lnδ,ξ − Lnξ) fξ‖L1

Then

‖ fξ − fξ,δ‖L1 6 α‖ fξ − fξ,δ‖L1 + ‖(Lnδ,ξ − Lnξ) fξ‖L1

implying the statement. �
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3.1. An informal description of the main algorithm to compute the stationary measure up to a

small given error

Based on lemma15, a strategy to rigorously bound ‖ fδ,ξ − fξ‖L1 is the following. The computer

will �nd an n such that (12) is satis�ed, then (13) will give an estimate for the approximation

error. We remark that if δ is small enough, ‖(Lnδ,ξ − Lnξ ) fξ‖L1 has a chance of being small,

since it is the difference of two nearby operators, both applied to the same regular (bounded

variation) measure. This is where the size δ of the approximation grid has a role in the quality

of the approximation. On the other hand, nmay depend on δ. This is why a priori estimates on

the approximation error are not trivial. Lemma 15 provides some a posteriori estimate on the

error; the approximation error is known after the computer certi�es the n and the α for which

(12) is satis�ed.

Hence the main algorithm for the approximation of the invariant measure will work as

follows:

(a) Given the grid size δ, compute Lδ,ξ and fξ,δ up to some prescribed precision.

(b) Find a good n and α: we estimate ‖Lnδ,ξ |V‖L1→L1 in an ef�cient way, �nding a good com-

promise between n and α, in a way that α is not too close to 1 and n not too big.We remark

that the norm of the �nite dimensional operator Lnδ,ξ is directly computable in principle,

but if δ is small then the size of the associated matrix is huge and this can be a hard com-

putational task. For this we use a coarse-�ne strategy which is explained in section 4, and
which takes into account that the huge matrix representing Lδ,ξ is actually coming from a

certain dynamical system with noise.

(c) Find a good estimate for ‖(Lnδ,ξ − Lnξ) fξ‖L1 . We remark that in this formula fξ is not

known, but still we can �nd enough information on it to estimate the difference of

operators we are interested in. This will be done by a method using both a priori
and a posteriori estimates, using an approximated knowledge of fξ and its varia-

tion. The procedure is explained in section 3.2 and in the following sections. A

simple but not ef�cient bound (equation (16)) is proved in section 3.2.1; we re�ne the

method in section 3.3 greatly improving the ef�ciency of the estimate with a bootstrap

argument.

(d) Estimate the approximation error ‖ fξ,δ − fξ‖L1 by lemma 15.

3.2. A bound for ‖(Lnδ,ξ − Lnξ )fξ‖L1

Having outlined the main algorithm we now show how to perform the main needed estimates.

In this section we describe how to estimate the quantity appearing on the right-hand side of

(13). This will be done by splitting this term in different parts which will be treated differently.

We start estimating the term as a telescopic sum whose summands will be estimated in the

following subsections.

Lemma 17. Let Lξ the transfer operator of the random system and Lδ,ξ its Ulam approx-
imation, as de�ned in section 2. Let fξ be an invariant probability measure for Lξ , it
holds

‖(Lnδ,ξ − Lnξ) fξ‖L1 6 ‖(πδ − 1) fξ‖L1 +

(

n−1
∑

i=0

‖Lδ,ξ |
i
V‖L1→L1

)

×
(

‖Nξ(πδ − 1)L fξ‖L1 + ‖NξπδL(πδ − 1) fξ‖L1
)

(14)
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Proof. The proof is based on a telescopic decomposition. We have

Lδ,ξ − Lξ =πδNξπδLπδ − NξL

=NξL− πδNξL+ πδNξL− πδNξπδL+ πδNξπδL− πδNξπδLπδ.

Performinga similar decomposition toLnδ,ξ = (πδNξπδL)nπδ . Pairing in a suitableway the terms

we inserted we obtain:

‖(Lnδ,ξ − Lnξ) fξ‖L1 = ‖
[

(πδNξπδL)
nπδ − (NξL)

n
]

fξ‖L1

6

n
∑

i=0

‖(πδNξπδL)
i(πδ − 1)(NξL)

n−i fξ‖L1

+

n−1
∑

i=0

‖(πδNξπδL)
iπδNξ(πδ − 1)L(NξL)

n−i−1 fξ‖L1

=

n
∑

i=0

‖(πδNξπδL)
i(πδ − 1) fξ‖L1

+

n−1
∑

i=0

‖(πδNξπδL)
iπδNξ(πδ − 1)L fξ‖L1

considering that fξ is �xed by NξL = Lξ . Shifting indexes by 1 in the the �rst sum, the estimate

can be written as

‖(Lnδ,ξ − Lnξ) fξ‖L1 6 ‖(πδ − 1) fξ‖L1 +
n−1
∑

i=0

‖(πδNξπδL)
iπδ|V‖L1→L1 · ‖NξπδL(πδ − 1) fξ‖L1

+

n−1
∑

i=0

‖(πδNξπδL)
iπδ|V‖L1→L1 · ‖Nξ(πδ − 1)L fξ‖L1

= ‖(πδ − 1) fξ‖L1 +

(

n−1
∑

i=0

‖Lδ,ξ |
i
V‖L1→L1

)

×
(

‖Nξ(πδ − 1)L fξ‖L1 + ‖NξπδL(πδ − 1) fξ‖L1
)

(notice that (πδ − 1)g has always average zero for any g, and consequently belongs to V ). �

3.2.1. An initial (a priori) bound for ‖fξ − fξ,δ‖L1 . Nowwe show a strategy to get a simple effec-

tive bound for the approximation error ‖ fξ − fξ,δ‖L1 based lemma 17, estimating the summands

on the right-hand side of (14) by quantities which are known from the description of the system

or can be computed by its approximated transfer operator. In the next section we will improve

the method, using more information on T and fξ and getting much more ef�cient estimates.

Lemma 18. Let fξ a stationary measure for a system de�ned as in (5) and fξ,δ a stationary
measure for its Ulam approximation, as de�ned in section 2. If there is n such that

‖Lnδ,ξ |V‖L1→L1 6 α < 1 (15)
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then

‖ fξ − fξ,δ‖L1 6
1+ 2

∑n−1
i=0 Ci

2(1− α)
δξ−1 Var(ρ). (16)

where 0 6 Ci 6 1 are such that ‖Liδ,ξ |V‖L1→L1 6 Ci.

Proof. The proof of the lemma is based on the following estimates, proved in corollary 49

and proposition 50 (Appendix B) allowing a �rst estimate on the right-hand side of (13). We

have

‖Nξ(1− πδ)‖L1→L1 6
1

2
δξ−1Var(ρ). (17)

‖(1− πδ)Nξ‖L1→L1 6
1

2
δξ−1Var(ρ). (18)

Now we apply (17), (18) to the summands of the right-hand side of (14). We see that all the

items there have either a Nξ(1− πδ) or a (1− πδ)Nξ appearing. Indeed since ‖ fξ‖1 6 1

‖(πδ − 1) fξ‖L1 = ‖(πδ − 1)NξL fξ‖L1 6
1

2
δξ−1Var(ρ).

Similarly the other summands, can be estimated recalling that ‖πδ‖L1→L1 6 1 and ‖Nξ‖L1→L1

6 1. Applying (13) we get the statement. �

The estimate given at (16) mainly depend on the ratio δξ−1 between the partition size and the

noise amplitude. This estimate is obtained without any information on the deterministic part

of the dynamics, only the information about the contraction rate of the approximated transfer

operator Lδ,ξ (to obtain n and α). This would already allow to obtain a good approximation

for the invariant density fξ , in principle, if we had enough computation power to carry on the

computation with a very small δ. Unfortunately, in the Matsumoto–Tsuda system, positive

Lyapunov exponent appears for very small sizes of the noise making the computation unfeasi-

ble even with the help of a supercomputer, due to the growth of the computational complexity

as ξ becomes small.

Therefore, we have to apply a more subtle and complicated strategy where the bootstrap

argument comes into play, i.e., using some information on fξ (and in particular about its

variation in given intervals) which we can obtain with a preliminary computation.

3.3. A stronger (a posteriori) bound

In this section we analyse better (14) and see how using some more assumptions on T, more

information on fξ and the use of the Wasserstein distance, we can drastically improve the

estimates given in lemma 18. We remark that the explicit error bound provided by lemma

18 is proportional to δξ−1; the new error estimate will be a sum where most summands are

proportional to δ2ξ−1.

Setting 19. From now on we will suppose we are in the framework of setting 14 and fur-
thermore we suppose T being piecewise smooth. We suppose that there is a partition {Pi}16i6k

such that

• each Pi is an interval,
• on each Pi the branch Ti :=T|Pi is monotonic and C

2 in the interior of Pi
• The limits of Ti ′(x) as x tend to the frontier of Pi exist in R ∪ {−∞,∞}.
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We will consider the transfer operator L related to the map and to every branch of the map.

For each L1 density g, we let Lig be the component of Lg coming from the ith monotone branch

(the pushforward map related to Ti), that is

Lig(x) =











g(T−1
i (x))

T ′(T−1
i (x))

if x ∈ Ti(Ii),

0 elsewhere.

(19)

In this way we have Lg =
∑

iLig.
Once the discretized transfer operator Lδ,ξ is computed and has a unique �xed probability

measure fδ,ξ , an approximation f̃ for fδ,ξ can be computed up to any given small error in L1 (this
is the computation of the �xed point of the big matrix representing Lδ,ξ). Let us assume that a

numerical approximation f̃ of fδ,ξ in the L1 norm is computed. Using f̃ , we will look for a strat-
egy for estimating the total error ‖ fξ − f̃‖L1 , that includes the appoximation error ‖ fξ − fδ,ξ‖L1
(because we approximated on a partition of size δ) and the numerical error ‖ fδ,ξ − f̃ ‖L1 . We

remark that

‖ fξ − f̃ ‖L1 6 ‖ fδ,ξ − f̃ ‖L1 + ‖ fξ − fδ,ξ‖L1 . (20)

For the estimation of ‖ fδ,ξ − f̃‖L1 in our algorithm we apply the same method described in

[13]. To �nd a stronger bound for ‖ fξ − fξ,δ‖L1 let us start again from the estimate given at

lemma 17. We will estimate independently the terms

‖(πδ − 1) fξ‖, ‖Nξ(πδ − 1)L fξ‖L1 , ‖NξπδL(πδ − 1) fξ‖L1 , (21)

appearing at (14), using the information we can extract from the approximation f̃ . Except
in the �rst case (that has the smallest weight in the estimate, according to (14)), the estimate

will become roughly proportional to δ2ξ−1, greatly improving the quality of the approximation

certi�cation. For each of the terms in (21) we prove in sections 3.3.2–3.3.4 bounds of the form

A‖ f̃ − fξ‖L1 + B

where A and B depend on δ and become small when δ is small. We remark that these bounds

depend on the error ‖ f̃ − fξ‖L1 itself. This together with precise bounds, based on some

approximation f̃ , permits us to tighten the bounds on the error ‖ f̃ − fξ‖L1 , using a so called

‘bootstrapping’ process.

3.3.1. A summary of norms and estimates. Before entering in the details of the estimate of

21, we introduce some of the norms used in the paper, and we summarize some of the bounds

that are used in this section and proved in appendix B.

Definition 20. Let X ⊂ [0, 1] be a �nite union of pairwise disjoint intervals, X =
⋃

jIj, Ii ∩
Ij = ∅ for i 6= j. We de�ne the variation on X of the function f (and denote it by VarX( f )) as
follows:

• when X is an interval (the endpoints may be included or not), the variation is de�ned as

VarX( f ) := sup
{x0<x1<...<xk}⊂X

k−1
∑

i=0

| f (xi+1)− f (xi)|

(the supremum being over �nite increasing sequences of any length k contained in X);
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• when X is a �nite union of pairwise disjoint intervals X =
⋃

jIj, Ii ∩ Ij = ∅ for i 6= j, the
variation is de�ned as VarX( f ) :=

∑

jVarI j( f ).

Remark 21. As it is well known, if f has a weak derivative, then VarX( f ) = ‖ f ′‖L1(X), see
for instance [29, chapter 4, proposition 4.2].

We will also consider a norm which is weaker than the L1 norm.

Definition 22. Let f be a function in L1([0, 1])with zero average,we de�ne theWasserstein-

like norm of f, as

‖ f‖W := ‖F‖L1 , whereF(x) =

∫ x

0

f (t)dt. (22)

Let Y ⊂ [0, 1] be a �nite union of pairwise disjoint intervals Y =
⋃

jIj, Ii ∩ Ij = ∅ for i 6= j, we
denote by W(Y ) the space of L1 functions with support contained in Y having zero average in

each Ij. If f ∈ W(Y ) we de�ne its norm by

‖ f‖W(Y) := ‖ f ‖W . (23)

Next proposition contains a summary of the bounds used in the next proofs and the location

of their proof in the paper; it can be used as an handy guideline throughout the paper, we refer

to the cited lemmas and proposition for details.

Proposition 23 (Summary of the bounds). Let πδ be theUlam projection on a homogeneous
partition of size δ, as de�ned in (11), let I be a set which is a �nite union of intervals of the
partition then:

(a) ‖1− πδ‖Var→L1 6 δ/2, lemma 48,
(b) ‖1− πδ‖L1→W 6 δ/2, lemma 52,
(c) ‖1− πδ‖Var(I)→W(I) 6 δ2/8, lemma 53.

Let Nξ be the convolution operator then:

(d) ‖Nξ‖L1→Var 6 ξ−1 Var(ρ), lemma 47,
(e) ‖Nξ‖W→L1 6 ξ−1Var(ρ), lemma 51,
( f ) ‖(1− πδ)Nξ‖L1→L1 6

1
2
δξ−1Var(ρ), corollary 49,

(g) ‖Nξ(1− πδ)‖L1→L1 6
1
2
δξ−1Var(ρ), proposition 50.

Let L be the transfer operator associated to T, and let Lig the component of Lg coming
from the ith branch as de�ned at (19), then:

(h) ‖L‖W(I)→W 6 ‖T ′‖L∞(I), lemma 55
(i) in lemma 56 the local variation inequality is proved:

VarI(Lig) 6VarT−1
i (I)(g) · ‖

1

T ′
‖L∞(T−1

i (I)) + ‖g‖L1(T−1
i (I)) · ‖

T ′′

T ′2
‖L∞ (T−1

i (I)) +

∑

y∈∂Dom(Ti):T(y)∈I

∣

∣

∣

∣

g(y)
T ′(y)

∣

∣

∣

∣

.

3.3.2. Estimate for ‖(πδ − 1)fξ‖L1 . We give now an estimate for the �rst item of (21).

Lemma 24. Let πδ be the Ulam projection on a homogeneous partition of size δ, then

‖(πδ − 1) fξ‖L1 6 A1 · ‖ fξ − f̃ ‖L1 + B1 (24)

for

A1 =
δ

2
ξ−1Var(ρ), B1 =

δ

2
· Var(NξL f̃ ). (25)
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Proof. We estimate:

‖(πδ − 1) fξ‖L1 = ‖(πδ − 1)NξL fξ‖L1 6 ‖(πδ − 1)NξL( fξ − f̃ )‖L1 + ‖(πδ − 1)NξL f̃‖L1

6 ‖(πδ − 1)Nξ‖L1 · ‖ fξ − f̃‖L1 + ‖πδ − 1‖Var→L1 · Var(NξL f̃ )

6
δ

2
ξ−1 Var(ρ) · ‖ fξ − f̃‖L1 +

δ

2
· Var(NξL f̃ )

where in the last line we used proposition 23, items (6) and (1). �

An upper bound on Var(NξL f̃ ) will be estimated using the results in appendix B.2.2 and the

explicit knowledge of the computed f̃ .

3.3.3. Estimate for ‖Nξ(1− πδ)Lfξ‖L1 . We give now the estimate of the second item of (21).

Themain idea is to use a coarser partitionΠmade of intervals whose size is an integralmultiple

of δ. Then, instead of estimating ‖Nξ(1− πδ)L fξ‖L1 globally we bound this quantity on each

interval of Π exploiting the approximate knowledge of the variation of fξ in the interval. This

drastically improves the quality of the estimate in almost every interval of Π and allows the

error-checking computation to be performed on a partition which is coarser than the initial

partition of size δ.

Lemma 25. Let Π be a uniform partition whose parts have size that is an integral multiple
of δ, T piecewise monotonic with Li de�ned as above. We have

‖Nξ(1− πδ)L fξ‖L1 6 A2 · ‖ fξ − f̃‖L1 + B2, (26)

with

A2 =
δ

2
Var(ρξ)

B2 =
δ

2
Var(ρξ)

∑

I∈Π

∑

i

min

{

δ

4
· VarI(Li f̃ ), ‖Li f̃‖L1(I)

}

.
(27)

Proof. We can estimate as

‖Nξ(1− πδ)L fξ‖L1 6 ‖Nξ(1− πδ)L f̃‖L1 + ‖Nξ(1− πδ)L( fξ − f̃ )‖L1 6 ‖Nξ(1− πδ)L f̃ ‖L1

+ ‖Nξ(1− πδ)‖L1 · ‖ fξ − f̃‖L1 6 ‖Nξ(1− πδ)L f̃ ‖L1

+
δ

2
Var(ρξ) · ‖ fξ − f̃‖L1 (28)

The �rst summand can be rewritten as

‖Nξ(1− πδ)L f̃‖L1 6 ‖Nξ‖W→L1 · ‖(1− πδ)L f̃‖W

6 ‖Nξ‖W→L1 ·
∑

I∈Π

‖(1− πδ)L f̃ · χI‖W(I)

splitting on the intervals of the partition, and using lemma 56 (because each I ∈ Π is a union

of intervals of the partition of size δ)
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6 ‖Nξ‖W→L1 ·
∑

I∈Π

∑

i

min
{

‖1− πδ‖VarI→W(I) · VarI(Li f̃ ),

‖1− πδ‖L1(I)→W(I) · ‖Li f̃‖L1(I)
}

6 Var(ρξ)·
∑

I∈Π

∑

i

min

{

δ2

8
· VarI(Li f̃ ),

δ

2
· ‖Li f̃‖L1(I)

}

.

In the last step we used the property of the W norm stated in lemmas 52 and 53. Adding the

second term of (28) we have proved the result. �

Therefore, once we have an approximation f̃ we can compute A2, B2 by a simple algorithm

that evaluates the double summation in the last equation of the above lemma.

Remark 26. When computing B2, the minimum could be always the one depending on

‖Li f̃‖L1(I). If this happens, the sum adds up to 1, and the new bound is worse than the a priori

estimate, since we are introducing a factor ‖ fξ − f̃ ‖L1 + 1 > 1.

In practice, this does not happen. On each ith preimage of an interval I of the partition the

new estimate will provide a better bound as soon as

δ

4
· VarI(Li f̃ ) < ‖Li f̃‖L1(I).

First of all, the variation of f̃ has an a priori bound by

Var( f̃ ) = Var(πδNξπδLπδ f̃ ) 6 ‖πδ‖Var · ‖Nξ‖L1→Var · 1 6 ξ−1 Var(ρ).

Now, we can try to control VarI(Li f̃ ) by using the local variation inequality in proposition

23. If the preimage T−1
i (I) does not contain a critical point or a singular point, we expect

(δ2/8) · VarI(Li f̃ ) to be small.

For the intervals I where we cannot apply the local variation inequality or where it does not
give us good enough bounds we fall back to the a-priori estimate depending on the L1 mass

rather than on the variation.

3.3.4. An estimate for ‖NξπδL(πδ − 1)fξ‖1. We give an estimate of the third item of (21). The

general idea is similar to the one explained in the previous section, again, some required

estimates are technical lemmas proved in appendix B.

Lemma 27. LetΠ be a uniform partition whose parts have size that is multiple of δ, we have:

‖NξπδL(1− πδ) fξ‖L1 6 A3 · ‖ fξ − f̃‖L1 + B3, (29)

with

A3 =
δ

2
ξ−1 Var(ρ),

B3 =
∑

I∈Π

min

{

δ2

8
ξ−1Var(ρ) · ‖T ′‖L∞(I),

δ

2

}

VarI(NξL f̃ )

+
δ2

4
ξ−1Var(ρ) · Var(NξL f̃ ).

(30)
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Proof. We have

‖NξπδL(1− πδ) fξ‖L1 = ‖NξπδL(1− πδ)NξL fξ‖L1

6 ‖NξπδL(1− πδ)NξL f̃‖L1 + ‖NξπδL(1− πδ)NξL( fξ − f̃ )‖L1

6 ‖NξL(1− πδ)NξL f̃‖L1

+ ‖Nξ(1− πδ)L(1− πδ)NξL f̃‖L1

+ ‖NξπδL‖L1 · ‖(1− πδ)Nξ‖L1 · ‖ fξ − f̃‖L1

6 ‖NξL(1− πδ)NξL f̃‖L1

+ ‖Nξ(1− πδ)‖L1 · ‖1− πδ‖Var→L1 · Var(NξL f̃ )

+ ‖(1− πδ)Nξ‖L1 · ‖ fξ − f̃‖L1

6 ‖NξL(1− πδ)NξL f̃‖L1 (31)

+
δ2

4
Var(ρξ) · Var(NξL f̃ ) (32)

+
δ

2
Var(ρξ) · ‖ fξ − f̃‖L1 . (33)

An algorithm for estimating for Var(NξL f̃ ) can be found in lemma 57. The term

‖NξL(1− πδ)NξL f̃ ‖L1 can be split over the intervals I ∈ Π and estimated as

∑

I∈Π

‖NξL(1− πδ)[NξL f̃ · χI]‖L1

6
∑

I∈Π

min {‖Nξ‖W→L1 · ‖L‖W(I)→W · ‖1− πδ‖VarI→W(I),

‖1− πδ‖VarI→L1
}

· VarI(NξL f̃ )

6
∑

I∈Π

min

{

δ2

8
Var(ρξ) · ‖T

′‖L∞(I),
δ

2

}

VarI(NξL f̃ )

proving the statement thanks to lemma 55 (because each I is a union of intervals of the partition
of size δ). �

Remark 28. To estimate B3, we estimate computationally VarI(NξL f̃ ) for each interval I ∈
Π using the algorithms explained in appendices B.2.1 and B.2.2. As in lemma 25, we obtain a

stronger estimate in the interval I as soon as

‖T ′‖L∞(I) <
4

δξ−1 Var(ρ)
.

Remark that in all our computations δξ−1Var(ρ) needs to be small, since it controls the approx-

imation error (refer to proposition 23, items 6 and 7). This implies that the inequality above

will be true for most of the intervals but those where T ′ becomes very big.
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3.3.5. An estimate for the L1 error ‖fξ − f̃‖L1 . In the previous sections we built the ingredients

for estimating ‖ fξ − fξ,δ‖L1 , but we want to estimate ‖ fξ − f̃‖L1 where f̃ is the output of a

computation approximating the �xed point of Lδ,ξ . We will do so assuming that we have an

estimate of the numerical error ‖ fξ,δ − f̃‖L1 (such an estimate can be found in [13]).

Let Ai, Bi (i = 1, 2, 3) be the constants de�ned as in (25), (27), (30). Plugging (24), (26),

(29) (according to lemmas 25 and 27) into (14), we have that ‖(Lnδ,ξ − Lnξ ) fξ‖L1 can be bounded
as

‖(Lnδ,ξ − Lnξ) fξ‖L1 6 A · ‖ fξ − f̃‖L1 + B,

where

A = A1 + (A2 + A3) ·
n−1
∑

i=0

Ci B = B1 + (B2 + B3) ·
n−1
∑

i=0

Ci.

Thanks to (13) we have

‖ fξ − fξ,δ‖L1 6 C + D · ‖ fξ − f̃ ‖L1 .

for C = A/(1− α) and D = B/(1− α), α is appearing in (13). Therefore, by (20) we have

‖ fξ − f̃ ‖L1 6 ‖ fξ,δ − f̃ ‖L1 + C + D · ‖ fξ − f̃‖L1 ,

which implies

‖ fξ − f̃ ‖L1 6
1

1− D
·
(

‖ fξ,δ − f̃‖L1 + C
)

.

4. Contraction speed estimates via coarse-fine methods

In this section we show an ef�cient way to estimate the rate of contraction of the discretized

transfer operator and �nd the suitable n and α described in section 3. Since Lδ,ξ is represented
by a matrix, a �rst attempt to perform this task would be to iterate and estimate the norm of the

iterate. This method is not very effective, since the matrix we should iterate is quite big. For

this we implement a strategy in which we get information for the full matrix from the iterates

of coarser versions of it. An earlier approach to this problem for deterministic systems can be

found in [14].

In lemmas 51 and 52 and corollary 49 we have seen that

‖(1− πδ)Nξ‖L1→L1 6 δ/ξ, ‖Nξ(1− πδ)‖L1→L1 6 δ/ξ, (34)

We now prove the following lemma which bounds the distance between the powers of Lξ and
Lδ,ξ , provided that the noise has been applied at least once before the application of Lξ and Lδ,ξ .

Lemma 29. Let ‖Liδ,ξ |V‖L1 6 Ci; let σ be a linear operator such that σ2 = σ, ‖σ‖L1 6 1,
and σπδ = πδσ = πδ; let Λ = σNξσL.
Then ∀n > 0

‖(Lnδ,ξ − Λ
n)Nξ‖L1 6

δ

ξ
·

(

2

n−1
∑

i=0

Ci + 1

)

(35)
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In particular the lemma applies if:

(a) σ = Id and Λ = Lξ ;

(b) σ = πδ′ and Λ = Lδ′,ξ , for any δ′ such that nδ′ = δ with n ∈ R.

As a consequence, we obtain a way to bound the contraction rate of certain operator Lδ′ ,ξ on
the zero-average space V using the computed contraction rate for a coarser operator Lδ,ξ . We

remark that

‖Ln+1
δ′ ,ξ |V‖L1 6 ‖Lnδ,ξ |V‖L1 + ‖(Lnδ′,ξ − Lnδ,ξ)‖L1 . (36)

We remark that on the left-hand side we have an n+ 1 in (36), which guarantees that the noise

has been applied at least once; this permits us to use lemma 29 to estimate the second summand

of the right-hand of (36).

Thus, if one is searching for an n such that ‖Ln+1
δ′,ξ |V‖L1 < 1 this can be found and certi�ed

by using a suitable coarse version Lδ,ξ , computing the norm of its iterates and using lemma 29

in a way that the second hand of (36) is smaller than 1.

Proof of Lemma 29. Notice that as a consequence of the hypotheses we have

‖σg− πδg‖L1 6 Var(g)δ/2, ‖σg− πδg‖W 6 ‖g‖L1δ/2

because σg − πδg = σ(1− πδ)g applying lemmas 52 and 53.

The proof is along the lines of what has been proved in section 3.2. Indeed, we have

‖(Lnδ,ξ − Λ
n)Nξ‖L1 6 ‖(πδNξπδL)

n‖L1 · ‖(πδ − σ)Nξ‖L1

+

n−1
∑

i=0

‖(πδNξπδL)
i‖L1 · ‖(πδ − σ)Nξ‖L1 · ‖(σLσNξ)

n−i‖L1

+

n−1
∑

i=0

‖(πδNξπδL)
iπδ‖L1 · ‖Nξ(πδ − σ)‖L1 · ‖LσNξ(σLσNξ)

n−i−1‖L1

6 ‖(πδ − σ)Nξ‖L1 +
n−1
∑

i=0

Ci‖(πδ − σ)Nξ‖L1 · ‖(σLσNξ)
n−i‖L1

+

n−1
∑

i=0

Ci‖Nξ(πδ − σ)‖L1 · ‖LσNξ(σLσNξ)
n−i−1‖L1 ,

and the thesis follows from the fact that ‖L‖L1 6 1, ‖Nξ‖L1 6 1, ‖σ‖L1 6 1. �

5. Estimating the average of an observable

As a result of the previous sections, we are able to obtain a precise approximation f̃ of fξ in
the L1 norm. This is not enough in order to estimate the Lyapunov exponent which we recall

can be de�ned as λξ =
∫

h dfξ where h = log|T ′|. This is because h is not in L∞ in the whole

interval. In the Belousov–Zhabotinsky case, there are two points where h goes to in�nity: the
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critical point and the point where the |T ′| goes to +∞. Outside of neighbourhoods of

these two points h is bounded. Moreover, in these two neighbourhoods h still has bounded

L1 norm. This is enough to perform our estimates since we can have L∞ bounds on

the stationary measure fξ ; this allows to compute the Lyapunov exponent using alter-

nately L1 and L∞ estimates on fξ and h in different sets. Therefore, we can join all these

observations together to obtain a rigorous approximation of λξ applying the following

strategy:

• we select a region E of [0, 1] such that h is in L∞ outside E;

• we estimate, on E, the quantities ‖ fξ‖L∞(E) and ‖h‖L1(E);
• we approximate (keeping rigorously track of the numerical errors) the integral

∫

[0,1]h dfξ
with

∫

[0,1]\Eh d f̃ (discarding the set E from the computation);

• we estimate the error in such an approximation in terms of ‖ fξ − f̃‖L1 , ‖ fξ‖L∞(E), ‖h‖L1(E)
and ‖h‖L∞([0,1]\E) (see corollary 30).

In subsection 5.1 we show how the error can be estimated in terms of the mentioned quan-

tities. The remaining subsections are devoted to estimating ‖ fξ‖L∞(E) and ‖h‖L1(E), notice that
in the case of uniform noise ‖ fξ‖L∞(E) 6 1/ξ, but we are able to obtain a better estimate

via f̃ .

5.1. Approximating the average using L1 and L∞ estimates

In this section we assume that f̃ is an approximation of fξ and both are probability measures,

therefore f̃ − fξ has 0 average.

Corollary 30. Let f and f̃ be probability densities on the measure space (X,m), both con-
tained in L1 and in L∞. Let E ⊂ X be a Borel subset, and H be an L1 observable that is L∞ in
X\E. Then

∣

∣

∣

∣

∫

X
H f dm−

∫

X\E
H f̃ dm

∣

∣

∣

∣

6 ‖H‖L1(E) · ‖ f‖L∞(E) +
supX\EH + infHX\E

2
· ‖ f − f̃‖L1 .

The proof of the corollary is straightforward, applying the following Lemma on the set X\E

Lemma 31. Let (X,m) be a measure space, let H ∈ L∞(X), and let v ∈ L1(X) a function
having 0 average. Then we have

∣

∣

∣

∣

∫

X
H · v dm

∣

∣

∣

∣

6
sup H − inf H

2
· ‖v‖L1 .

Proof. Indeed, for a constant c we have

∣

∣

∣

∣

∫

X
Hv dm

∣

∣

∣

∣

6

∣

∣

∣

∣

∫

X
(H − c)v dm

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

X
cv dm

∣

∣

∣

∣

6 ‖H − c‖L∞ · ‖v‖L1 ,

because v has 0 average, and this is clearly optimized taking c = (supH+ infH)/2. �

Remark 32. Corollary 30 yields immediately an algorithm for estimating an observable that

is L1, and is L∞ outside a neighbourhood of a �nite number of points si where it goes to∞, as
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is the case with the observable log|T ′| of the system we are studying. In fact, there is a trade-off

on the size of E, and we attempt different sets E enclosing the si with intervals of different sizes
on order to obtain the tightest possible estimate on the error. Every such choice of the set E
yields an approximation of

∫

XH fdm as
∫

X\EH f̃ dm and a bound for the error.

5.2. L∞ bounds for the stationary measure in an interval

To estimate the average of the unbonded observable h and apply corollary 30, in this subsection
we obtain a bound for the L∞ norm of the invariantmeasure fξ on intervals of a certain partition.
We derive it as a byproduct of the rigorous estimate of the L1 error, and the algorithms explained

in appendices B.2.1 and B.2.2, that allow to bound VarI(NξL f̃ ) for each I ∈ Π.

Lemma 33. Let Π be a uniform partition, for each I ∈ Π we have

‖ fξ‖L∞(I) 6 VarI(NξL f̃ )+
‖NξL f̃‖L1(I)

|I|
+ ‖ f̃ − fξ‖L1 · ‖ρξ‖L∞ .

Proof. Indeed,

‖ fξ‖L∞(I) = ‖NξL fξ‖L∞(I) 6 ‖NξL f̃‖L∞(I) + ‖NξL( f̃ − fξ)‖L∞

6 VarI(NξL f̃ )+ ‖NξL f̃‖L1(I)/|I|+ ‖Nξ‖L1→L∞ · ‖L( f̃ − fξ)‖L1

and the estimate follows because ‖Nξ‖L1→L∞ 6 ‖ρξ‖L∞ . �

5.3. L1 bounds on log|T ′|

In this section we compute explicit bounds for the L1-norm of log|T ′| for the map de�ned

in section 2 in a neighbourhood of the points where it is not bounded, as required to apply

remark 32. As can be deduced from its de�nition in section 2, we need to do so in intervals

enclosing x = 0.125 and x = 0.3. We provide the proof only of the �rst one, as they are all

very elementary.

Lemma 34. For 0.125− 2−6 < u < 0.125 < v < 0.125+ 2−6 we have
∫ v

u
log |T ′(x)|, d x ∈ −

2

3

[

(0.125− u)(log(0.125− u)− 1)+ (v − 0.125)(log(v − 0.125)− 1)
]

− (v − u) log(3)−
v2 − u2

2
+ [0, (log(5)− log(4))(v − u)].

Proof. By a direct computation we have

T ′(x) =

(

−(x − 0.125)1/3 − a+
1

3
|x − 0.125|−2/3

)

e−x,

and

log |T ′(x)| = log

(

1

3
|x − 0.125|−2/3 − (x − 0.125)1/3 − a

)

− x.

Notice that for |x − 0.125| < 2−6 we have

1

3
|x − 0.125|−2/3 >

1

3
24 > 5
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while

a 6

∣

∣

∣
(x − 0.125)1/3 + a

∣

∣

∣
6 2−2

+ a 6 1.

Consequently in the interval [0.125− 2−6, 0.125+ 2−6] we have that log|T ′(x)| > 0, and

furthermore

log |T ′(x)| 6 log

(

1

3
|x − 0.125|−2/3

)

− x = −
2

3
log |x − 0.125| − log(3)− x.

It follows that for 0.125− 2−6 < u < 0.125 < v < 0.125+ 2−6 we have

∫ v

u
log |T ′(x)| 6 −

2

3

[

(0.125 − u)(log(0.125 − u)− 1)+ (v − 0.125)(log(v − 0.125)− 1)
]

− (u− v) log(3)−
v2 − u2

2
.

In the same way we have that

log |T ′(x)| > log

(

1

3
|x − 0.125|−2/3 − 1

)

− x

and since

1

5

1

3
|x − 0.125|−2/3

> 1

we have that

log |T ′(x)| > log

(

4

5

1

3
|x − 0.125|−2/3

)

− x = log
4

5
+ log

(

1

3
|x − 0.125|−2/3

)

− x

consequently subtracting (log(5)− log(4))(v− u) the same value above is also valid as a lower

bound. �

Lemma 35. For 0.2 < x < 0.3 we have

∫ 0.3

x
log |T ′(x)|, dx ∈ (log([d1, d2])+ log(0.3− x)− 1) (0.3− x)−

1

2
(0.32 − x2)

for d1 = 1
3
( 2
3
· (0.175)−5/3 + (0.175)−2/3) and d2 =

[

a+ (x − 0.125)1/3 − 1
3
|x − 0.125|−2/3

]

/(0.3− x), where a = 0.506073 56 . . . as in section 2.

Lemma 36. For 0.3 < x < 0.303 we have

∫ x

0.3

log |T ′(x)|dx =
(

log a+ log 19+ 19 log 10− 38+ log(10/3)
)

· (x − 0.3)

+18(x log(x)+0.3 log(0.3))+ (x − 0.3) log(x − 0.3)−
190

6
(x−0.3)2.
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Figure 4. A plot of the intervals enclosing the values of the Lyapunov exponent for
several sizes of the noise. The plotted values are listed in Table 1.

6. Computation details and results

We give here some details about the code performing our computer aided estimates and about

the results. The main algorithm is written in Python using the Sage framework and interval

arithmetics ([31]), some critical parts are written in C++ and uses (optionally) the GPU, this in

particular is used for the iteration of large matrices6 needed to apply the methods of section 4.

Such parts have been optimized to use high performance computing; even so each contrac-

tion test has required a time of the of order of a week7. The code we used can be found at

http://im.ufrj.br/∼maurizio.monge/wordpress/rigorous_computation_dyn/.

Table 1 contains the result of the computer aided estimates we performed and the values

of the parameters used in these estimates. In �gure 4 we summarize with a graph the most

important information contained in the table. The graph shows intervals enclosing the Lya-

punov exponent at the selected noise values. These are the �nal result of our computer aided

estimates; it is worth to remark again that the estimated requiring more computational power

are the ones performed to prove that the Lyapunov exponent is positive for small size of the

noise.

6The matrices in this part of the computation have about 220 lines and columns, see the second column of table 1 for

the inverse of the size of the matrix at each computer aided estimate.
7The contraction time estimates were run on an Asus GeForce GTX 1050Ti, 4 GB of Ram GPU installed in a desktop

computer with an AMD A4-6300 3.4 GHz processor and 8 GB of Ram. The matrices were assembled on a Dell R710

server with 2 sixcore Xeon 5660 2.8 GHz processors and 24 GB of Ram.
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To ease the understanding of table 1, we now outline some more details of the implemen-

tation of our algorithm and how the parameters take place in the algorithm’s execution; the

columns are ordered as they are subsequently used in the algorithm, or deduced from previous

quantities and via computations.

One of the main ingredients and goals of the computer aided estimates is to compute the

number of iterates of the transfer operator needed to contract the zero average space (see item

1 of section 3.1). For this we apply the ‘coarse �ne’ methods explained in section 4. For each

value of the noise amplitude, denoted by ξ, we build a coarse discretization Lξ,δcontr of the
operator Lξ , on a partition of coarse size δcontr. We then compute values of ncontr and αcontr

represented in table 1, which satisfy

‖Lncontrξ,δcontr
|V‖L1 6 αcontr < 1;

and compute explicit bounds for ‖Liξ,δcontr |V‖L1 (whose value does not appear in the table). The
algorithm used for these �nite dimensional estimates is the same as in [13] and there explained.

We consider then a �ner partition size δ and use the coarse �ne estimates of section 4 to

compute α and
∑ncontr

i=0 Ci, where Ci = ‖Liξ,δ|V‖L1 and

‖Lncontr+1
ξ,δ |V‖L1 6 α.

The same bounds work for Lξ, i.e.

‖Lncontr+1
ξ |V‖L1 6 α, and

ncontr
∑

i=0

‖Liξ |V‖L1 6
ncontr
∑

i=0

Ci.

Notice that the bigger the ncontr, the worse is going to be the estimate on the L1 norm on

(Lnξ − Lnξ,δ contr
)Nξ , i.e., the error coming from the coarse-�ne inequality. While increasing ncontr

permits us to �nd smaller αcontr, this may not imply that the corresponding α is smaller. Our

algorithms attempts to �nd the best compromise. Needless to say, in practice this procedure

may fail, if unable to detect any contraction in a reasonable time. This might happen for

example if the original system is not mixing.

To estimate an upper bound to the L1 error in the computation of the stationary measure we

use the results shown in section 3. The column ‘a priori. . . ’ contains the a priori estimate on

the L1 error of the approximation of the measure on the partition of size δ as given using the

results in subsection 3.2.1 while the column ‘re�ned. . . ’ contains the L1 error when we use the
bootstrapping techniques of subsection 3.3.

Oncewe have a good approximationof the invariantmeasure, we compute an approximation

of the Lyapunov exponent by computing an integral on a partition of size δest, using section 5;
the computed intervals enclosing rigorously the Lyapunov exponent are contained in the last

column. This allows to prove theorem 2.

Proof of Items I1 and I2 of Theorem 2. We refer to the values listed in table 1. For a

noise size of ξ1 = 0.873× 10−4. By the results of sections 3–5 our algorithm certi�es that

the Lyapunov exponent λξ1 ∈ [8.365× 10−2, 8.917× 10−2]. In particular, this proves that

λξ1 > 0.

For a noise size of ξ2 = 0.860× 10−2 our algorithm certi�es that the Lyapunov exponent

λξ2 ∈ [−6.03602× 10−1,−6.03536× 10−1]. In particular, this proves that λξ2 < 0. �

We remark that in the case of random diffeomorphisms there exists a dychotomy [23]:

if the Lyapunov exponent is positive the system admits a random strange attractor (chaotic
behaviour) while if the Lyapunov exponent is negative the system has a random sink (regular
behaviour).
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7. Quantitative stability of the system and of the Lyapunov exponent

In this section we study of the regularity of λξ as a function of ξ and prove that this varies

α−Holder continuously for every α < 1. We start showing a simple Lipschitz stability result

for the �xed point of aMarkov operator. This will show that the stationary measure is Lipschitz

stable in L1 when the noise amplitude change. This is not suf�cient to deduce that the Lyapunov

exponent is Lipschitz stable, because as we have seen the Lyapunov exponent is the average of

an observable which is unbounded. In this case a control in L1 of the stationary measure is not

suf�cient to control its average. For this reasonwe strengthen the estimates to an Lp quantitative
stability statement with p > 1 which is suf�cient to control the average of our observable.

7.1. Lipschitz stability of the stationary measure

A quantitative stability statement for the stationary measure follows from a general and

elementary lemma about perturbations of Markov operators:

Lemma 37. Let L1, L2 : L1 → L1 be two Markov operators. Assume

‖Li1|V‖L1→L1 6 Ci

and suppose that CN < 1 for a certain N. Let fi be a �xed probability measure of Li, then
∑N−1

k=0 Ci < ∞ and

‖ f2 − f1‖L1 6

∑N−1
k=0 Ci

1− CN
· ‖L1 − L2‖L1 . (37)

Proof. The existence of N such that CN < 1 easily implies that Ci decreases exponentially
and

∑N−1
k=0 Ci < ∞. Since f0, f1 are �xed probability measures

‖ f2 − f1‖L1 6 ‖LN2 f2 − LN1 f1‖L1 6 ‖LN2 f2 − LN1 f2‖L1 + ‖LN1 f2 − LN1 f1‖L1

6 ‖LN1 ( f2 − f1)‖L1 + ‖LN2 f2 − LN1 f2‖L1 .

Since Ci → 0, and f2 − f1 ∈ V, we can chose N such that CN < 1, we have ‖LN1 ( f2 − f1)‖L1 6
CN‖ f2 − f1‖L1 and

‖ f2 − f1‖L1 6
‖LN2 f2 − LN1 f2‖L1

1− CN
.

Let us now consider the term ‖LN2 f2 − LN1 f2‖L1 . Since

(LN1 − LN2 ) =
N
∑

k=1

LN−k1 (L1 − L2)L
k−1
2

then

−(LN2 − LN1 ) f2 =
N
∑

k=1

LN−k1 (L1 − L2)L
k−1
2 f2

=

N
∑

k=1

LN−k1 (L1 − L2) f2

and we have the statement. �
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7.1.1. Stability of the measure under perturbation of the noise. Now let us see that the station-

ary measure also varies in a Lipschitz way with respect to perturbations of the noise: suppose

T satis�es setting 19 and let ρ1 and ρ2 be two bounded variation noise kernels and associated

transfer operators Li( f ) = ρi∗̂LT ( f ) for i = 1, 2.

Lemma 38. Let Li be de�ned as above, then

‖(L1 − L2) f‖L1 6 ‖ρ1 − ρ2‖L1 · ‖ f‖L1

Proof. Indeed,

‖(L1 − L2) f‖L1 6 ‖[ρ0 − ρ1]∗̂LT ( f )‖ 6 ‖ρ1 − ρ2‖L1 · ‖ f‖L1 .

�

From this and the classical Lp interpolation inequality, in the case of dynamical systems

with additive noise we get the following Lp stability estimate

Corollary 39. Let L1, L2 : L1 → L1 be two transfer operators of deterministic systems with
additive noise Li( f ) = ρi∗̂LT ( f ) for i = 1, 2. Assume

‖Li1|V‖L1→L1 6 Ci

and suppose thatCN < 1 for a certainN. Let fi be a �xed probabilitymeasure of Li and Suppose
1 6 r < ∞. Then

‖ f2 − f1‖Lr 6

(

∑N−1
k=0 Ci

1− CN
· ‖ρ1 − ρ2‖L1

)
1
r

(2max(‖ρ1‖BV , ‖ρ2‖BV))
1− 1

r . (38)

Proof. We get that for i = 1 and i = 2, ‖ fi‖L∞ 6 ‖ fi‖BV 6 max(‖ρ1‖BV , ‖ρ2‖BV). Suppose
1 6 r < ∞ and u ∈ L1 ∩ L∞, the classical Lp interpolation inequality implies that u ∈ Lr and

‖u‖Lr 6 ‖u‖
1
r
L1
‖u‖

1− 1
r

L∞ .

Applying this to (37)

‖ f2 − f1‖Lr 6

(

∑N−1
k=0 Ci

1− CN
· ‖L1 − L2‖L1

) 1
r

(2max(‖ρ1‖BV , ‖ρ2‖BV))
1− 1

r . (39)

using the estimate for ‖L1 − L2‖L1 given in lemma 38 we get (38). �

Lemma 40. Suppose ρ1, ρ2 are the uniform kernel ρ1 = ξ−11[−ξ/2,ξ/2], ρ2 = ξ̃−11[−ξ̃/2,ξ̃/2]

we have

‖ρ1 − ρ2‖L1 6
2

max{ξ, ξ̃}
|ξ − ξ̃|.

Proof. Indeed,

‖ρ1 − ρ2‖L1 6 min{ξ, ξ̃}

∣

∣

∣

∣

1

ξ
−

1

ξ̃

∣

∣

∣

∣

+
|ξ − ξ̃|

max{ξ, ξ̃}

=
2|ξ − ξ̃|

max{ξ, ξ̃}
.

�
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If ξ, ξ̃ > ξ1 =
8.73
105

(see theorem 2) we get ‖ρ1 − ρ2‖L1 6
2×105

8.73 |ξ − ξ̃| and putting this in

(38) considering that in this case ‖ρi‖BV 6 4105

8.73
+ 1 we get

‖ f2 − f1‖Lr 6

(

∑N−1
k=0 Ci

1− CN
·
2× 105

8.73
|ξ − ξ̃|

) 1
r(

4× 105

8.73
+ 1

)1− 1
r

. (40)

We recall that the numbersCi represents the contraction rate of one of the two operators.We

show that even for these quantities we can have an uniform estimate when ξ, ξ̃ > ξ1. The fol-
lowing result allows to estimate the Ci constants (such that ‖Liξ|V‖1 6 Ci) when the amplitude

of the noise is increased.

Lemma 41. Let ρξ = ξ−11[−ξ/2,ξ/2] and Nξ the associated noise operator. If ξ̂ > ξ and
‖(NξL)i‖V→L1 6 Ci < 1, then

‖(Nξ̂L)
i‖V→L1 6 Ci(ξ/ξ̂)

i
+

[

1− (ξ/ξ̂)i
]

< 1. (41)

Proof. Let ξ̂ = ξ + ǫ and ρξ = ξ−11[−ξ/2,ξ/2], we have

ρξ+ǫ = (ξ + ǫ)−11[−(ξ+ǫ)/2,(ξ+ǫ)/2]

=
ξ

ξ + ǫ
ρξ +

ǫ

ξ + ǫ
·
1

ǫ
1[−(ξ+ǫ)/2,−ξ/2]∪[ξ/2,(ξ+ǫ)/2]

Therefore

Nξ+ǫ =
ξ

ξ + ǫ
Nξ +

ǫ

ξ + ǫ
M

whereM is the Markov operator of convolution with ǫ−11[−(ξ+ǫ)/2,−ξ/2]∪[ξ/2,(ξ+ǫ)/2].

In the same way we have that Nξ̂L is a convex combination of the Markov operators NξL

andML with coef�cients ξ/ξ̂ and 1− ξ/ξ̂, and

(Nξ̂L)
i
= (ξ/ξ̂)i(NξL)

i
+

[

1− (ξ/ξ̂)i
]

Q

for a suitable Markov operatorQ formed by the remaining terms of the expansion. Considering

the L1 norm the inequality follows. �

We remark that when Ci < 1 it holds that the right hand of (41) is smaller than 1, by this

we have immediately the following corollary

Corollary 42. Let ρξ and Nξ as above. Suppose ‖(NξL)i‖V→L1 < 1, then for each ξ 6 ξ̂ 6 1

it holds

‖(Nξ̂L)
i‖V→L1 < 1

and the system is mixing for every noise greater than ξ.

By continuity of the above estimates when ξ̂ varies and compactness of [ξ1, 1] if follows
that

∑N−1
k=0 Ci and CN have an uniform bound on [ξ1, 1] and then for each r > 1 there is C > 0

such that for each ξ − ξ̃ ∈ [ξ1, 1]

‖ f2 − f1‖Lr 6 C|ξ − ξ̃|
1
r (42)

proving the Hőlder stability of the stationary measure in Lr.
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7.2. Stability of the Lyapunov exponent

Now we see how from the Hőlder stability of the stationary measure proved in the previous

section we can easily deduce the Hőlder stability of the Lyapunov exponent λξ and the Hőlder

continuity of λξ as ξ varies. We recall that λξ :=
∫ 1

0
φ(x)dµξ where φ(x) = log|T ′(x)|.

Corollary 43. For each r > 1 we have that φ ∈ L
r

r−1 and there is C > 0 such that for each
ξ, ξ̃ ∈ [ξ1, 1],

|λξ − λξ̃ | 6 ‖φ‖
L

r
r−1
C|ξ − ξ̃|

1
r .

Proof. We can get an explicit formula for φ, indeed

T ′(x) =















−
1

6

e−x

(8x − 1)
2
3

(

24x + 6a(8x − 1)
2
3 − 11

)

0 6 x 6 0.3

−
19× 1019

3
cx18e−

190
3 x (10x − 3) 0.3 < x 6 1

by this φ ∈ Lp[0, 1] for each p ∈ [1,∞) and then by the holder inequality

|λξ − λξ̃ | 6

∫ 1

0

φ(x)[ f1 − f2]dm 6 ‖φ‖
L

r
r−1

‖ f2 − f1‖Lr

from which the statement follows applying (42). �
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Appendix A. Generalities, ergodicity and Lyapunov exponents in random

dynamics

In this section we recall some basic results and de�nitions in the ergodic theory of random

transformations and the integral formula for the Lyapunov exponent. We refer to [32, chapter

5]; another classical reference is [1].

LetX be the interval [−ξ, ξ] endowedwith the Borel σ-algebra and p the uniformprobability

on X; let Ξ = XN the space of sequences with values in this space endowed with the product

σ-algebra Ω and the product measure P = pN. Let φ be the shift acting on Ξ.
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We endow the interval [0, 1] with the Borel σ-algebra β and we de�ne the measurable skew

product:

F : (Ξ,Ω)× ([0, 1], β)→ (Ξ,Ω)× ([0, 1], β) F(ω, x) = (φ(ω), T(x)+ (ω)0).

This skew product models the evolution of the stochastic process

Xn+1 = T(Xn)+ ωn.

where ωn is a sequence of i.i.d. random variables uniformly distributed in [−ξ, ξ] endowed
with the Borel σ-algebra.

In the following, let Lξ be the annealed transfer operator as de�ned in section 2. This operator
embodies howmeasures behave ‘in average’ under the action of the random dynamical system;

let µ be a measure on [0, 1] and Tǫ(x) = T(x)+ ǫ, we have that

Lξµ(B) =

∫

µ(T−1
ǫ (B))dp(ǫ).

Since φ is the one sided shift and ν is a stationary measure, i.e., Lξν = ν, the product

measure P× ν is invariant for F [32, proposition 5.4]. Since the transfer operator related to

convolution with a bounded variation kernel is regularizing from L1 to BV which is compactly

immersed in L1 it is easy to see that the transfer operator has at least one stationary measure fξ
with density in BV (see [12] lemma 23 for more details).

Definition 44. A stationary measure ν is said to be ergodic if the measure P× ν is ergodic

for F.

Remark 45. While we use this as our de�nition of ergodicity for the random dynamic, we

refer to [32] for equivalent alternative de�nitions.

Proposition 46. Let Lξ be the transfer operator associated to the Belousov–Zhabotinsky
mapwith additive noise of size ξ. Let ξ1 = 0.873× 10−4. For each ξ > ξ1 there exists a unique,
ergodic stationary measure µξ for the operator Lξ , and for P× µξ almost every point (ω, x),
we have that

lim
n→+∞

1

n

n−1
∑

i=0

log |T ′i(ω, x)) | =

∫ 1

0

log(|T ′(x)|)dµξ(x)=:λξ

Proof. The operator Lξ is de�ned from SM(X) to L1([0, 1]); therefore, all of its �xed points
belong to L1([0, 1]).

In the last row of table 1 the columns n and α shows that for the noise of amplitude ξ1 it
holds

‖L75ξ1‖V→L1 6 0.55 (43)

(the n in the table is valid for both the approximation Lδ,ξ1 and the original operator Lξ1 , as
explained after lemma 29).

Suppose f, g are two �xed probability measures for the operator, by (43):

‖ f − g‖L1 = ‖L75ξ1 ( f − g)‖L1 6 0.55‖ f − g‖L1

which implies that ‖ f − g‖L1 = 0. Thus Lξ1 has a unique �xed probability measure µξ1 in L
1,

i.e., the only stationarymeasure is µξ1 . Now the same holds for every ξ > ξ1 thanks to corollary
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42. The corollary indeed implies that ‖L75ξ ‖V→L1 < 1 and we can repeat the same reasoning as

above, obtaining an unique stationary measure for each such Lξ.
A kind of ergodic decomposition theorem is established for stationary measures [32,

theorem 5.13]; the theorem states that every stationary measure can be written as a convex

combination of ergodic stationary measures. Since µξ is the unique stationary measure, it fol-

lows that µξ is an ergodic stationary measure. Therefore P× µξ is an ergodic measure for F
and the result follows applying Birkhoff ergodic theorem to F. �

Appendix B. Operator norms and variation estimates

In this section we prove several technical lemmas and estimates about operator norms and

variation of iterates of measures which are used in section 3.

B.1. Operator norms

The following lemma allows to estimate the variation of a boundary re�ecting convolution.

Lemma 47. Let ρξ(x) be a real function with bounded variation and support contained in
(−ξ, ξ). Let b(x) a function with zero average on the unit interval. We have

Var(ρξ ∗̂ f ) 6 Var(ρξ) · ‖ f‖L1([0,1]).

As a consequence we have that

‖Nξ‖L1→Var 6 Var(ρξ) = ξ−1Var(ρ).

Proof. Since the support of f̂ is contained in [0, 1] we have that the support of ρξ ∗ f̂ is
contained in [−ξ, 1+ ξ] and that:

ρξ ∗̂ f (x) = ρξ ∗ f̂ (x)+ ρξ ∗ f̂ (−x)+ ρξ ∗ f̂ (2− x).

We recall that:

Var[−1,2](ρξ ∗ f̂ ) 6 Var(ρξ) · ‖ f̂‖L1([−1,2]) = Var(ρξ) · ‖ f‖L1([0,1]);

which implies

Var[0,1](ρξ∗̂ f ) 6 Var[0,1](ρξ ∗ f̂ )+ Var[−1,0](ρξ ∗ f̂ )+ Var[1,2](ρξ ∗ f̂ ) 6 Var(ρξ) · ‖ f‖L1([0,1]).

�

The following lemma is a small improvement (by a factor 2) of a lemma which has

already been used in [13, 22]. While it seems to be folklore, we prove it here for a matter

of completeness.

Lemma 48. For each f ∈ BV

‖ f − πδ f‖L1 6
δ

2
Var( f ).

In other words

‖1− πδ‖Var→L1 6 δ/2.
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Proof. Let I be an interval of the partitionΠ, and assume f to have variation v in I. In I, πδ( f )
is constant and equal to the average of f in I.

Subtracting a constant we can assume f to have average 0 in I, so that we will be estimating

‖ f‖L1(I) assuming πδf to be 0 in I. We will disregard the variation at the boundary of I, and will
only assume a bound on the variation on the interior.

We start by supposing f to be piecewise constant, with two pieces: f is −x on an interval of
size a and v − x in an interval of size δ − a. Since the average is 0 we have that

xa = (v − x)(δ − a),

that implies x = v − av/δ. The L1 norm in I is

2xa = 2a(v − av/δ),

and has derivative with respect to a equal to

2v − 4av/δ,

which becomes zero for a = δ/2. Consequently x = v/2, and a variation v contributed an L1(I)
norm of 2ax = vδ/2.

We claim that the biggest ratio ‖ f‖L1(I)/v is attained when f is piecewise constant attaining
exactly the values−x and v − x. Indeed, if this was not the case, we could build a new function

f̃ selecting the region where f is nonnegative (or nonpositive), and setting as value the average
of f in this region. In this way we obtain a f̃ that has the same L1(I)-norm, but smaller variation.

If these two regions are not a partition of I in two intervals, then the difference between the

maximum and the minimum of f is smaller than v, and again the f is not optimal.

Applying this estimate to all the intervals of the partition we have that a total variation of v
can give a total L1 norm of vδ/2, and consequently we have the lemma. �

By lemma 48, since ‖Nξ‖L1→Var = ξ−1Var(ρ) by lemma 47 we get:

Corollary 49. With the notations de�ned above, we have

‖(1− πδ)Nξ‖L1→L1 6
1

2
δξ−1Var(ρ).

This corollary is used in section 3.2.1.

B.1.1. Estimate for ‖Nξ(1− πδ)‖L1 . To estimate this item (necessary in section 3.2.1) we will

use the W norm, de�ned in de�nition 22.

Proposition 50. We have

‖Nξ(1− πδ)‖L1→L1 6
1

2
δξ−1Var(ρ).

The proof will be postponed to the following lemmas. The �rst lemma relates the convolu-

tion with the ‖‖W norm.

Lemma 51. Let a(x) be a real function with bounded variation with support contained in
(−1/2, 1/2), and b(x) supported in [0, 1] and with zero average. We have

‖a ∗ b‖L1([−1,2]) 6 Var(a) · ‖b‖W .

As a consequence we have that

‖a∗̂b‖L1([0,1]) 6 Var(a) · ‖b‖W
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and therefore

‖Nξ‖W→L1 6 Var(ρξ) = ξ−1 Var(ρ).

Proof. Let’s prove the lemma assuming �rst that a(x) is absolutely continuous. Let B(x) =
∫ x
0
b(t)dt; integrating by parts we have

(a ∗ b)(x) =

∫ 1

−1

a(−t)b(x + t)dt = [a(−t)B(x+ t)]+1
−1 −

∫ 1

−1

− a′(−t)B(x + t)dx,

the boundary term being 0 because b(t) is zero-average in the interval.
The support of a∗b is contained in [−1/2, 3/2]; we compute now:

‖a ∗ b‖L1([−1,2]) =

∫ 2

−1

∣

∣

∣

∣

∫ 1

−1

a′(t)B(x − t)dt

∣

∣

∣

∣

dx 6

∫ 2

−1

∫ 1

−1

|a′(t)B(x − t)| dt dx

=

∫ 1

−1

∫ 2−t

−1−t
|a′(t)B(u)| du dt 6

∫ 1

−1

|a′(t)|dt

∫ 1

0

|B(u)|du

(putting u = t− x and using that B(u) has support in [0, 1])

6

∫ 1

−1

|a′(t)|dt ·

∫ 1

0

|B(u)|du 6 Var(a) · ‖B‖L1 6 Var(a) · ‖b‖W .

When a(x) is not absolutely continuous, let’s just choose absolutely continuous functions an
such that an → a in L1 and Var(an)→ Var(a), and apply Fatou’s lemma.

Now, observing as before that:

ρξ ∗̂ f (x) = ρξ ∗ f̂ (x)+ ρξ ∗ f̂ (−x)+ ρξ ∗ f̂ (2− x).

we have that

‖ρξ∗̂ f‖L1([0,1]) 6 ‖ρξ ∗ f̂‖L1([−1,2]) 6 Var(ρξ)‖ f ‖W .

�

To prove the proposition 50 we also need a bound for ‖1− πδ‖L1→W .

Lemma 52. For the Ulam discretization of size δ we have

‖1− πδ‖L1→W 6 δ/2.

Proof. We will prove the lemma is true on the space of all measures in the interval. Then we

can view any measure as a combination of point masses, using that 1− πδ is a linear operator

on signed measures, andW is a norm on zero-average measures.

Let∆t be the atomic measure centred in t and with weight 1 (Kronecker’s δt, we use capital
∆ to avoid confusion), then (1− πδ)∆t = ∆t − δ−1χI, where I = (pi, pi+1) is the interval of

the δ-sized partition containing t. To compute itsW-norm we need to compute the L1 norm of

ut(x) =

∫ x

0

(

∆t(y)− δ−1χI(y)
)

dy

=















δ−1(pi − x) for x ∈ [pi, t],

δ−1(pi+1 − x) for x ∈ [t, pi+1],

0 elsewhere.
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Its L1 norm is computed as

‖ut‖L1 = δ−1

∫ t

pi

(x − pi)dx + δ−1

∫ pi+1

t
(pi+1 − x)dx = δ−1 1

2
(t − pi)

2

+ δ−1 1

2
(pi+1 − t)2 6

δ

2

because it is a quadratic function that reaches its maximum for t ∈ {pi, pi+1}, where its value
is exactly δ/2.

Now, the general case. We are applying a linear operator and a norm on measures, con-

sequently we are applying a weak-∗ lower semi-continuous function. We veri�ed that such

function is 6 δ/2 on atomic measures, and this holds for all �nite combinations of atomic

measures. Since �nite combinations of atomic measures are weak-∗ dense in the space of all

measure we have the lemma. �

Proof of Proposition 50. By lemmas 51 and 52 we have

‖Nξ(1− πδ)‖L1 6 ‖1− πδ‖L1→W · ‖Nξ‖W→L1 6
1

2
δξ−1 Var(ρ).

�

B.1.2. An estimate for ‖(1− πδ)|X‖Var→W . xxx

Lemma 53. We have

‖(1− πδ)‖Var(X)→W(X) 6
δ2

8
.

for each X ⊆ [0, 1] that is a union of intervals of the partition.

Proof. Let g ∈ L1, let us estimate ‖(1− πδ)g‖W; assume g to have support contained in an

interval of the partition I, and subtracting πδg assume its average in I to be 0, and as usual let

G =
∫

g. Assume the variation to be v, and the maximum of G′ be u. Then we have u− v 6

G′ 6 u. Assume a < b ∈ I are points such that G(a) = G(b) = 0 and G is nonnegative (the

nonpositive case being symmetrical), then G is bounded by the functions

u(x − a), (v − u)(b− x).

These linear functions form a triangle of height h that satis�es

h/u+ h/(v − u) = b− a 6 δ,

and therefore h 6 δu(v − u)/v. An estimate for the integral of G over [a, b] is therefore

obtained multiplying by (b− a)/2, and its integral over I is therefore bounded by

δ2u(v − u)

2v
.

Deriving with respect to the parameter u as usual, we have that the maximum is attained for

u = v/2, and is equal to vδ2/8. Since v was the variation in the interval of the partition, we

proved the lemma. �
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Remark 54. In the proof we just used the total variation of g in the interiors of the inter-
vals I ∈ Π, disregarding the possible jumps at the boundary between different intervals of the

partition.

B.1.3. An estimate for ‖L‖W(I)→W. We give here an estimate for ‖L‖W(I)→W, that is the W norm

of Lf for a function (having zero average and) whose support is contained in an interval I. This
estimate is required in the proof of lemma 27.

Lemma 55. We have

‖L‖W(I)→W 6 ‖T ′‖L∞(I).

Proof. Observe that for each function h ∈ L1, and putting H =
∫

h so that ‖h‖W = ‖H‖L1 ,
we have

∫

Lh =
∑

i

∫ x

0

h(T−1
i (t))

T ′(T−1
i (t))

dt =
∑

i

∫ T−1
i (x)

0

h(y)dy (via t = Ti(y)) =
∑

i

H(T−1
i (x))

(we assume the above integral to be extended as a constant value for x outside the image Ti).
Therefore

‖Lh‖W =

∥

∥

∥

∥

∫

Lh

∥

∥

∥

∥

L1
6
∑

i

∫ 1

0

|H(T−1
i (x))|dx6

∑

i

∫

T−1
i ([0,1])

|H(y)| · T ′(y)dy (via x= Ti(y))

6

∫ 1

0

|H(y)| · T ′(y)dy 6 ‖H‖L1 · ‖T
′‖L∞(Supp(H)) 6 ‖h‖W · ‖T ′‖L∞(Supp(I)).

�

B.2. Variation estimates

In this section we collect several variation estimates which are used in section 3.

B.2.1. The variation of Lg in an interval I. We recall here how we can estimate the variation of

Lg in an interval, the estimate will be used computationally for estimating the variation of L f̃
in intervals of some partition. This estimate is used to compute the bound provided by lemma

25.

Lemma 56 (Local variation inequality). Let I ⊆ [0, 1] be an interval. Let Lig be the com-
ponent of Lg coming from the ith branch, de�ned in (19). We have VarI(Lg) 6

∑

iVarI(Lig),
and the variation of each component can be estimated as

VarI(Lig) 6VarT−1
i (I)(g) · ‖

1

T ′
‖L∞(T−1

i (I)) + ‖g‖L1(T−1
i (I)) · ‖

T ′′

T ′2
‖L∞(T−1

i (I))

+
∑

y∈∂Dom(Ti ):T(y)∈I

∣

∣

∣

∣

g(y)

T ′(y)

∣

∣

∣

∣

.

Proof. Let g ∈ C1([0, 1]), the bounded variation case following by density of C1 in BV:

(Lig)
′(x) =

g′(T−1
i (x))

T ′(T−1
i (x))2

−
g(T−1

i (x)) · T ′′(T−1
i (x))

T ′(T−1
i (x))3

.
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And consequently the variation of g in an interval I can be bounded as

∫

I

∣

∣

∣

∣

g′(T−1
i (x))

T ′(T−1
i (x))2

∣

∣

∣

∣

+

∣

∣

∣

∣

g(T−1
i (x)) · T ′′(T−1

i (x))

T ′(T−1
i (x))3

∣

∣

∣

∣

dx =

∫

T−1
i (I)

∣

∣

∣

∣

g′(y)

T ′(y)

∣

∣

∣

∣

+

∣

∣

∣

∣

g(y) · T ′′(y)

T ′2

∣

∣

∣

∣

dy

replacing T−1(x) by y, and dx by T ′(Y )dy, as usual.
Taking into account the value of Lig at the boundary of its support we obtain the estimate.

Please remark that if Ti is not full branch the support of Lig is strictly contained in [0, 1] �

B.2.2. The variation of Nξg. We deduce an algorithm for estimating VarI(Nξg) provided that
we have enough information about g.

Lemma 57. Assume ρξ = ξ−1χ[−ξ/2,ξ/2](x). For any interval I = [a, b] we have

VarI(Nξg) 6 ξ−1 ·min
{

‖g‖L1(I−ξ/2∪I+ξ/2)Var(ρ), |I| · Var[a−ξ/2,b+ξ/2](g)‖ρ‖∞
}

.

Hence in the case where ρξ = ξ−1χ[−ξ/2,ξ/2]

VarI(Nξg) 6 ξ−1 ·min
{

‖g‖L1(I−ξ/2∪I+ξ/2), |I| · Var[a−ξ/2,b+ξ/2](g)
}

.

Proof. For an interval of the partition I (centred in t, say), let us set

I = I − ξ/2 ∪ I + ξ/2,

we have

∫

I
|(ρξ ∗ g)

′|dx 6

∫

I

(
∫

I
|ρ′ξ(x − y)g(y)|dy

)

dx 6

∫

I
|g(y)|

∫

I
|ρ′ξ(x − y)|dxdy

6

∫

I
|g(y)|Var(ρξ)dy 6 ξ−1 Var(ρ) ·

(

‖g‖L1(I−ξ/2) + ‖g‖L1(I+ξ/2)

)

.

Symmetrically putting I = [a, b] we have

∫

I
|(ρξ ∗ g)

′|dx 6

∫

I

(
∫

|ρξ(x − y)g′(y)|dy

)

dx 6

∫

I
‖ρξ‖∞

∫ x+ξ/2

x−ξ/2

|g′(y)|dydx

6

∫

I
ξ−1‖ρξ‖∞

∫ b+ξ/2

a−ξ/2

|g′(y)|dydx 6

∫

I
ξ−1‖ρξ‖∞ dx ·

∫ b+ξ/2

a−ξ/2

|g′(y)|dy

6 |I|ξ−1‖ρξ‖∞Var[a−ξ/2,b+ξ/2](g).

�

Remark 58. If the minimumwas always obtained as the �rst part, we end up estimating the

total variation of Nξg as 2ξ
−1

= Var(ρξ), getting the same bound as in the a priori estimate. If

the second part is always bigger, the estimate is approximatively Var(g), with a small increase

due to the fact that we will be integrating the variation over an interval of size ξ + δ rather

than ξ.
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