

Instituto de Matemática - IM/UFRJ Cálculo Diferencial e Integral III - MAC238

Gabarito primeira prova - Escola Politécnica / Escola de Química - 12/05/2015

Questão 1: (2.5 pontos)

Seja $A \subset \mathbb{R}^2$ o conjunto limitado pela curva plana com parametrização dada por:

$$\sigma(\theta) = ((2 + \sin(4\theta))\cos(\theta), (2 + \sin(4\theta))\sin(\theta)), \quad \theta \in [0, 2\pi],$$

(ver figura 1). Determine a área de A.

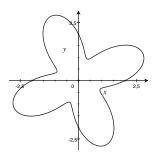


Figure 1: A curva.

Solução:

A aplicação de mudança de coordenadas polares em Euclideanas é dado por $\Phi:[0,\infty)\times[0,2\pi]\to \mathbf{R}^2, (r,\theta)\mapsto (r\cos\theta,r\sin\theta)$. Como

$$A = \Phi(\{(r, \theta) : r \le 2 + \sin(4\theta)\}),$$

obtemos pela mudança de variáveis que

área(A) =
$$\iint_A dx dy = \iint_{\{(r,\theta): r \le 2 + \sin(4\theta)\}} |\det D\Phi| dx dy$$

= $\int_0^{2\pi} \left(\int_0^{2 + \sin(4\theta)} r dr \right) d\theta = \frac{1}{2} \int_0^{2\pi} (2 + \sin(4\theta))^2 d\theta$
= $\frac{1}{2} \left(4\theta - \cos(4\theta)|_0^{2\pi} \right) + \frac{1}{2} \int_0^{2\pi} \sin^2(4\theta) d\theta$

Versão 1: $\sin^2(4\theta) = (1 - \cos(8\theta))/2$. Então, obtém-se a integral indefinida

$$\int \sin^2(4\theta)d\theta = \frac{1}{2}(\theta - \frac{1}{8}\sin(8\theta))$$

Versão 2: Pela integração em partes, obtém-se as integrais indefinidas

$$\int \sin^2(4\theta)d\theta = \sin(4\theta) \cdot \frac{-1}{4}\cos(4\theta) + \frac{1}{4}\int 4\cos^2(4\theta)d\theta$$
$$= -\frac{1}{4}\sin(4\theta)\cos(4\theta) + \int 1 - \sin^2(4\theta)d\theta.$$

Daí, $\int \sin^2(4\theta)d\theta = \theta/2 - \sin(4\theta)\cos(4\theta)/8$ e

$$\operatorname{área}(A) = 4\pi + \frac{1}{2} \left(\frac{\theta}{2} - \frac{\sin(4\theta)\cos(4\theta)}{8} \Big|_{0}^{2\pi} \right) = 4\pi + \pi/2 = \frac{9\pi}{2}.$$

Questão 2: (2.5 pontos)

Calcule o volume do solido V contido no primeiro octante (i.e., $x \ge 0$, $y \ge 0$, $z \ge 0$) e limitado pelas superfícies $z + \frac{x^2}{9} + \frac{y^2}{4} = 1$ e $z - \frac{x^2}{4} - \frac{y^2}{9} = 0$.

Solução:

A projeção da interseção das duas superfícies no plano xy é uma circunferência, de equação $x^2 + y^2 = 36/13$. O solido pode ser representado como um domínio de tipo 3:

$$W = \{(x, y, z) \mid (x, y) \in D, \frac{x^2}{4} + \frac{y^2}{9} \le z \le 1 - \frac{x^2}{9} - \frac{y^2}{4}\},\$$

onde

$$D = \{(x, y) \mid x^2 + y^2 \le 36/13, x \ge 0, y \ge 0\},\$$

como tem a restrição ao primeiro octante.

Logo, podemos calcular o volume:

$$\iint \int_{W} 1 \cdot dx \, dy \, dz = \iint_{D} \int_{\frac{x^{2}}{4} + \frac{y^{2}}{9}}^{1 - \frac{x^{2}}{9} - \frac{y^{2}}{4}} 1 dz \, dx \, dy = \iint_{D} 1 - \frac{13}{36} (x^{2} + y^{2}) \, dx \, dy.$$

Em D, podemos passar em coordenadas polares $x=\rho\cos(\theta), y=\rho\sin(\theta); D=\{(\theta,\rho)\mid 0\leq\theta\leq\pi/2, 0\leq\rho\leq\frac{6\sqrt{13}}{13}\}$. Logo:

$$\int \int_D 1 - \frac{13}{36} (x^2 + y^2) \, dx \, dy = \int_0^{2\pi} \int_0^{\frac{6\sqrt{13}}{13}} \left(1 - \frac{13}{36} \rho^2 \right) \rho \, d\rho \, d\theta$$
$$= 2\pi \left(\frac{\rho^2}{2} - \frac{13}{4 \cdot 36} \rho^4 \right) \Big|_0^{\frac{6\sqrt{13}}{13}}.$$

Questão 3: (2.5 pontos)

Calcule a integral de linha de função escalar:

$$\int_C |y| \, ds,$$

ao longo da curva plana C com parametrização dada por:

$$\gamma(\theta) = (e^{\theta}\cos(\theta), e^{\theta}\sin(\theta)), \quad \theta \in [0, 3\pi].$$

Solução:

O vetor velocidade γ' é dado por

$$\gamma'(\theta) = \left(e^{\theta}(\cos(\theta) - \sin(\theta)), e^{\theta}(\sin(\theta) + \cos(\theta))\right).$$

Logo calculamos a sua norma:

$$\|\gamma'(\theta)\| = \left(e^{2\theta}(\cos(\theta) - \sin(\theta))^2 + e^{2\theta}(\sin(\theta) + \cos(\theta))^2\right)^{\frac{1}{2}} = \sqrt{2}e^{\theta}.$$

Gabarito primeira prova - Escola Politécnica / Escola de Química - 12/05/2015(continuação)

Por definição da integral de linha de função escalar, temos

$$\int_C |y| ds = \int_0^{3\pi} e^{\theta} |\operatorname{sen}(\theta)| \|\gamma'(\theta)\| d\theta$$

$$= \sqrt{2} \int_0^{\pi} e^{2\theta} \operatorname{sen}(\theta) d\theta - \sqrt{2} \int_{\pi}^{2\pi} e^{2\theta} \operatorname{sen}(\theta) d\theta + \sqrt{2} \int_{2\pi}^{3\pi} e^{2\theta} \operatorname{sen}(\theta) d\theta.$$

Para calcular uma primitiva de $F(\Theta) = \int^{\Theta} e^{2\theta} \operatorname{sen}(\theta) d\theta$, integramos duas vezes por partes

$$\begin{split} F(\Theta) &= \int^{\Theta} \operatorname{sen}\left(\theta\right) d(\frac{1}{2}e^{2\theta}) = \frac{1}{2}e^{2\Theta} \operatorname{sen}\left(\Theta\right) \\ &= \frac{1}{2}e^{2\Theta} \operatorname{sen}\left(\Theta\right) - \frac{1}{4}e^{2\Theta} \cos(\Theta) d(\frac{1}{2}e^{2\theta}) \\ &= \frac{1}{2}e^{2\Theta} \operatorname{sen}\left(\Theta\right) - \frac{1}{4}e^{2\Theta} \cos(\Theta) - \frac{1}{4}F(\Theta) \,, \end{split}$$

o que nós dá $F(\Theta) = \frac{2}{5}e^{2\Theta}\mathrm{sen}(\Theta) - \frac{1}{5}e^{2\Theta}\cos(\Theta)$.

Portanto, concluímos que

$$\int_C |y| ds = \sqrt{2} \left(F(\theta) \Big|_0^{\pi} - F(\theta) \Big|_{\pi}^{2\pi} + F(\theta) \Big|_{2\pi}^{3\pi} \right) = \frac{\sqrt{2}}{5} \left(1 + 2e^{2\pi} + 2e^{4\pi} + e^{6\pi} \right) .$$

Questão 4: (2.5 pontos)

Calcule a seguinte integral de linha de campo vetorial:

$$\int_C \left(\frac{3(y-1)}{(x-1)^2 + (y-1)^2} + \frac{-5(y+1)}{(x+1)^2 + (y+1)^2} \right) dx + \left(\frac{-3(x-1)}{(x-1)^2 + (y-1)^2} + \frac{5(x+1)}{(x+1)^2 + (y+1)^2} \right) dy$$
 ao longo da curva $C = C_1 \cup C_2$, união das curvas definidas por:

- C_1 , a curva $x^2 + y^2 = 1$ percorrida no sentido horário,
- C_2 , a a curva $x^2 + y^2 = 9$ percorrida no sentido anti-horário.

Solução:

A gente vai dividir a integral em quatro integrais distintos:

1.
$$\int_{C_1} \frac{3(y-1)}{(x-1)^2 + (y-1)^2} dx + \frac{-3(x-1)}{(x-1)^2 + (y-1)^2} dy,$$

2.
$$\int_{C_1} \frac{-5(y+1)}{(x+1)^2 + (y+1)^2} dx + \frac{5(x+1)}{(x+1)^2 + (y+1)^2} dy,$$

3.
$$\int_{C_2} \frac{3(y-1)}{(x-1)^2 + (y-1)^2} dx + \frac{-3(x-1)}{(x-1)^2 + (y-1)^2} dy$$

4.
$$\int_{C_2} \frac{-5(y+1)}{(x+1)^2 + (y+1)^2} dx + \frac{5(x+1)}{(x+1)^2 + (y+1)^2} dy.$$

Seja

$$\vec{F}(x,y) = -3 \cdot \frac{-(y-1)}{(x-1)^2 + (y-1)^2} \cdot \vec{i} - 3 \cdot \frac{(x-1)}{(x-1)^2 + (y-1)^2} \cdot \vec{j},$$

podemos observar que esse campo é 3 vezes o trasladado do campo

$$\frac{-y}{x^2+y^2} \cdot \vec{\imath} + \frac{x}{x^2+y^2} \cdot \vec{\jmath}$$

no ponto (1,1). Por isso:

$$\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} = 0.$$

O mesmo raciocínio vale pelo campo

$$\vec{G}(x,y) = 5 \cdot \frac{-(y+1)}{(x+1)^2 + (y+1)^2} \cdot \vec{i} + 5 \cdot \frac{(x+1)}{(x+1)^2 + (y+1)^2} \cdot \vec{j}.$$

Observamos que a curva C_1 delimita um domínio D_1 que não contem singularidades nem de \vec{F} , nem de \vec{G} . Por isso podemos aplicar o Teorema de Green:

$$\int_{C_1} \frac{3(y-1)}{(x-1)^2 + (y-1)^2} dx + \frac{-3(x-1)}{(x-1)^2 + (y-1)^2} dy = \int_{D_1} 0 \, dx \, dy = 0,$$

e

$$\int_{C_1} \frac{-5(y+1)}{(x+1)^2 + (y+1)^2} dx + \frac{5(x+1)}{(x+1)^2 + (y+1)^2} dy = \int_{D_1} 0 \, dx \, dy = 0.$$

Temos agora que calcular:

$$\int_{C_2} \frac{3(y-1)}{(x-1)^2 + (y-1)^2} dx + \frac{-3(x-1)}{(x-1)^2 + (y-1)^2} dy.$$

Como a curva C^2 delimita um domínio D_2 que contem uma singularidade em (1,1) temos que trabalhar um pouco para aplicar Green. Observamos que podemos aplicar Green no domínio $\tilde{D}_{2,F} = \{(x,y) \mid x^2+y^2 \leq 9, (x-1)^2+(y-1)^2 \geq 1\}$, cuja borda orientada positivamente é a união de C_2 percorrida em sentido anti-horário com curva auxiliaria \tilde{C}_2 dada por $(x-1)^2+(y-1)^2=1$ percorrida no sentido horário. Podemos aplicar Green:

$$\int_{C_2} \vec{F} d\vec{r} + \int_{\tilde{C}_2} \vec{F} d\vec{r} = \int_{\tilde{D}_{2,F}} 0 \, dx \, dy = 0,$$

logo

$$\int_{C_2} \vec{F} d\vec{r} = \int_{\tilde{C}_2^-} \vec{F} d\vec{r},$$

onde \tilde{C}_2^- é a curva $(x-1)^2+(y-1)^2=1$ percorrida no sentido anti-horário, que podemos parametrizar por

$$\sigma(\theta) = (1 + \cos(\theta), 1 + \sin(\theta)), \quad \theta \in [0, 2\pi].$$

Por isso:

$$\int_{C_2} \vec{F} d\vec{r} = \int_{\tilde{C}_2^-} \vec{F} d\vec{r} = -3 \int_0^{2\pi} \sin(\theta)^2 + \cos(\theta)^2 d\theta = -6\pi.$$

Seguindo o mesmo raciocínio, usando o domínio $D_{2,G} = \{(x,y) \mid x^2 + y^2 \le 9, (x+1)^2 + (y+1)^2 \ge 1\}$, e aplicando Green obtemos que:

$$\int_{C_2} \vec{G} d\vec{r} = 10\pi,$$

e que:

$$\int_{C} \left(\frac{3(y-1)}{(x-1)^{2} + (y-1)^{2}} + \frac{-5(y+1)}{(x+1)^{2} + (y+1)^{2}} \right) dx + \left(\frac{-3(x-1)}{(x-1)^{2} + (y-1)^{2}} + \frac{5(x+1)}{(x+1)^{2} + (y+1)^{2}} \right) dy$$

$$= 10\pi - 6\pi = 4\pi.$$