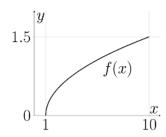
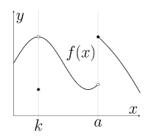
Universidade Federal do Rio de Janeiro

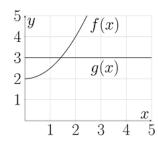
Instituto de Matemática

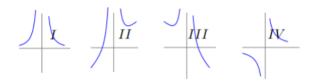

Disciplina: Cálculo I

Professor: Carlos Penafiel, Daniel Bastos, Dennis Becerra, Diego Ferraz, Eber Dantas, Gina Orlando, Lucas Aragão, Maria Fernanda, Michael Deustche, Michel Tosin, Miguel Reyes, Rolci Cipolatti, Xavier Carvajal


Data: 8/5/2023

Primeira Prova

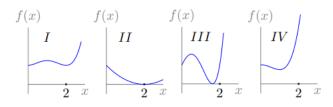

1. A figura abaixo mostra só uma parte do gráfico da função f(x). O que podemos afirmar com certeza?


- (a) f(x) e f'(x) são não negativos em 1 < x < 10.
- (b) f(x) tem uma assíntota horizontal.
- (c) f(x) e f'(x) são não negativos $\forall x$.
- (d) Pelo gráfico temos certeza que $\lim_{x \to 1} f(x) = 0$.
- (e) Não sei.
- 2. Marque a alternativa verdadeira:

- $\begin{array}{ll} \text{(a) Existe } \lim_{x \to k} f(x), \text{ mas n\~ao existe } \lim_{x \to a} f(x). \\ \text{(b) } \lim_{x \to k} f(x) = f(k) \text{ e o limite } \lim_{x \to a^{-}} f(x) \text{ existe.} \end{array}$
- (c) Os limites $\lim_{x\to k} f(x)$ e $\lim_{x\to a} f(x)$ não existem.
- (d) A função não está definida em x = k e x = a.
- (e) Não sei.
- 3. Marque a alternativa verdadeira.

- (a) f(1) < g(1), f'(1) > g'(1).
- (b) f(1) > q(1), f'(1) < q'(1).
- (c) f(1) < g(1), f'(1) < g'(1).
- (d) f(1) > g(1), f'(1) > g'(1).
- (e) Não sei.
- 4. Se f(x) e g(x) são deriváveis, com f'(x) > g'(x)no intervalo (0,4) e f(2) > g(2), podemos afirmar que:
 - (a) f(x) > g(x) em 2 < x < 4.
 - (b) f(x) > g(x) em 0 < x < 4.
 - (c) f(x) = g(x) para algum x em (2, 4).
 - (d) f(x) > g(x) para todo x.
 - (e) Não sei.
- 5. Considere f e sua derivada f' num intervalo (a, b):
 - (I) Se f'(x) > 0 em (a, b), então f(x) é crescente em(a,b)
 - (II)Se f(x) é constante em (a,b), então f'(x) < 0em(a,b)
 - (a) Apenas I é verdadeira
 - (b) Apenas II é verdadeira
 - (c) Ambas são verdadeiras
 - (d) Ambas são falsas
 - (e) Não sei.
- 6. Considere $f(x) = 3x^3 2x + 1$ e assinale a equação da reta tangente ao gráfico de f no ponto (-1,0):
 - (a) y = 7x + 7
 - (b) y = 4x + 4
 - (c) y = 4x
 - (d) y = 7x + 1
 - (e) Não sei.
- 7. Assinale o gráfico da função $f(x) = x + \frac{1}{x^2}$ no intervalo (-2,2):

- (a) II
- (b) I
- (c) III
- (d) IV
- (e) Não sei.


- 8. O lucro da venda de um produto é dado, em milhões de reais, pela função $L(p) = -p^2 + 5p + 2$, onde $p \in [1, 5]$ é o preço de venda. Assinale o preço para o qual o lucro é o maior possível:
 - (a) p = 2.5 reais
 - (b) p = 2.3 reais
 - (c) p = 2.7 reais
 - (d) p = 1.9 reais
 - (e) Não sei.
- 9. Considere as tabelas e os gráficos com alguns valores de 3 funções distintas, f_1, f_2 , e f_3 . Assinale a correspondência correta:

	x	y		x	y	
T_1 :	0	1	T_2 :	0	1	
	0.47	0.53		0.95	0.07	
	1	0		1	0	
			y			
			1			
	x	y	1			
T_2 .	x = 0	<i>y</i> 1	1		\.	
T_3 :	$ \begin{array}{ c c } \hline x \\ \hline 0 \\ 0.04 \end{array} $	y 1 0.94	1	f_1 f_2	2 \f3	
T_3 :	0	1	1	f_1 f_2	£ \f3	

- (a) $T_1 \to f_2, T_2 \to f_3, T_3 \to f_1$
- (b) $T_1 \to f_3, T_2 \to f_1, T_3 \to f_2$
- (c) $T_1 \to f_3, T_2 \to f_2, T_3 \to f_1$
- (d) $T_1 \to f_2, T_2 \to f_1, T_3 \to f_3$
- (e) Não sei.
- 10. O gráfico da derivada f'(x) é dado por

assinale o gráfico de f(x):

- (a) I
- (b) II
- (c) III
- (d) IV
- (e) Não sei.

- 11. Sejam $f(x) = x^2 e g(x) = 1 x^2$. Para cada $x \in (0,1)$, as retas tangentes a f e a g possuem um ponto de interseção. Seja C o conjunto de todos esses pontos de interseção. Assinale o menor valor da primeira coordenada para os pontos de C:
 - (a) $\frac{\sqrt{2}}{2}$
 - (b) $\frac{\sqrt{3}}{2}$
 - (c) $\frac{\sqrt{2}}{3}$
 - (d) $\frac{\sqrt{3}}{3}$
 - (e) Não sei.
- 12. Se f(a) < g(a) < g(b) < f(b), então:
 - (I) A taxa de variação média em [a, b] de f é menor que a de g
 - (II) f pode ter taxa de variação média em [a, b]igual a 0
 - (a) Ambas são falsas
 - (b) Ambas são verdadeiras
 - (c) apenas I é verdadeira
 - (d) apenas II é verdadeira
 - (e) Não sei.
- 13. Seja L a reta tangente ao gráfico da função y= $x^3 + 7$, no ponto (1,8). Assinale a área da região triangular formada por L e pelos eixos x e y:

 - (b) $\frac{23}{4}$

 - (c) $\frac{21}{5}$ (d) $\frac{27}{3}$
 - (e) Não sei.
- 14. Seja h(x) = f(x)g(x), com h(1) = 24, g(1) =6, f'(1) = 2 e h'(1) = 20. O valor de g'(1) é:
 - (a) 2
 - (b) 1
 - (c) -1
 - (d) 0
 - (e) Não sei.
- 15. Calcule a derivada de $f(x) = \frac{x^2-2x+3}{x-1}$